Skip to main content

Advertisement

Log in

Taurolidine as an effective and biocompatible additive for plaque-removing techniques on implant surfaces

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of the present study was the evaluation of the effectiveness and efficiency of two plaque-removing techniques, plastic curettes (PC) and glycine powder airflow (GLY) in combination with taurolidine (T), chlorhexidine (CHX), or pure water (PW) as additives and compared to groups without previous treatment (NT).

Materials and methods

Plaque was collected on titanium samples for 48 h in six subjects. Specimens were worn in a special splint in the upper jaw and randomly assigned to test and control groups. After biofilm removal procedures, clean implant surface (CIS) on the samples and treatment time were taken as parameters.

Results

Mean CIS was determined in the following descending order: T-GLY > CHX-GLY > NT-GLY > T-PC > PW-GLY > PW-PC > CHX-PC > NT-PC. Mean treatment time was determined in the following ascending order: T-GLY < CHX-GLY < PW-GLY < NT-GLY < T-PC < CHX-PC < PW-PC < NT-PC.

Conclusions

Within the limits of this study, it can be concluded that T showed the highest CIS in the GLY and PC groups. T-GLY showed significantly more CIS than all other GLY groups. The T-PC group showed significantly more CIS than all other PC groups. The treatment times of the T groups were significantly lower than their corresponding PC or GLY groups.

Clinical relevance

The results of the current study indicate that taurolidine seems to enhance effectiveness of plaque-removing procedures with plastic curettes and glycine powder airflow. Also, the efficiency of both treatment procedures seems to be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klokkevold PR, Newman MG (2000) Current status of dental implants: a periodontal prospective. Int J Oral Maxillofac Implants 15:56–65

    PubMed  Google Scholar 

  2. Lekholm U, Adell R, Eriksson B, Brånemark PI, Jemt T (1990) Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 5:347–359

    PubMed  Google Scholar 

  3. Lekholm U, Gunne J, Henry P, Higuchi K, Lindén U, Bergström C, van Steenberghe D (1999) Survival rate of Branemark implants in partially edentulous jaws: a 10 year study. Int J Oral Maxillofac Implants 69:639–645

    Google Scholar 

  4. Renvert S, Polyzois I, Maguire R (2009) Re-osseointegration on previously contaminated surfaces: a systematic review. Clin Oral Implants Res 20(4):216–227

    Article  PubMed  Google Scholar 

  5. Zitzmann NU, Berglundh T (2008) Definition and prevalence of peri-implant diseases. J Clin Periodontol 35(8):286–291

    Article  PubMed  Google Scholar 

  6. Berglundh T, Gotfredsen K, Zitzmann NU, Lang NP, Lindhe J (2007) Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: an experimental study in dogs. Clin Oral Implants Res 18(5):655–661

    Article  PubMed  Google Scholar 

  7. Heitz-Mayfield LJ (2008) Peri-implant diseases: diagnosis and risk indicators. J Clin Periodontol 35(8):292–304

    Article  PubMed  Google Scholar 

  8. Schwarz F, Ferrari D, Popovski K, Hartig B, Becker J (2009) Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J Biomed Mater Res B Appl Biomater 88(1):83–91

    Article  PubMed  Google Scholar 

  9. Berglundh T, Lindhe J, Marinello C, Ericsson I, Liljenberg B (1992) Soft tissue reaction to de novo plaque formation on implants and teeth. An experimental study in the dog. Clin Oral Implants Res 3(1):1–8

    Article  PubMed  Google Scholar 

  10. Zitzmann NU, Berglundh T, Marinello CP, Lindhe J (2001) Experimental peri-implant mucositis in man. J Clin Periodontol 28(6):517–523

    Article  PubMed  Google Scholar 

  11. Fürst M, Salvi GE, Lang NP, Persson GR (2007) Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res 18:501–508

    Article  PubMed  Google Scholar 

  12. Salvi GE, Fürst MM, Lang NP, Persson GR (2008) One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res 19:242–248

    Article  PubMed  Google Scholar 

  13. Esposito M, Hirsch J, Lekholm U, Thomsen P (1999) Differential diagnosis and treatment strategies for biologic complications and failing oral implants: a review of the literature. Int J Oral Maxillofac Implants 14:473–490

    PubMed  Google Scholar 

  14. Quirynen M, De Soete M, van Steenberghe D (2002) Infectious risks for oral implants: a review of the literature. Clin Oral Implants Res 13:1–19

    Article  PubMed  Google Scholar 

  15. Leonhardt A, Dahlén G, Renvert S (2003) Five year clinical, microbiological, and radiological outcome following treatment of peri-implantitis in man. J Periodontol 74:1415–1422

    Article  PubMed  Google Scholar 

  16. Renvert S, Lessem J, Dahlén G, Renvert H, Lindahl C (2008) Mechanical and repeated antimicrobial therapy using a local drug delivery system in the treatment of peri-implantitis: a randomized clinical trial. J Periodontol 5:836–844

    Article  Google Scholar 

  17. Fox SC, Moriarty JD, Kusy RP (1990) The effects of scaling a titanium implant surface with metal and plastic instruments: an in vitro study. J Periodontol 61(8):485–490

    Article  PubMed  Google Scholar 

  18. Augthun M, Tinschert J, Huber A (1998) In vitro studies on the effect of cleaning methods on different implant surfaces. J Periodontol 69(8):857–864

    Article  PubMed  Google Scholar 

  19. Kreisler M, Kohnen W, Christoffers AB, Gotz H, Jansen B, Duschner H, d’Hoedt B (2005) In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er:YAG laser and an air powder system. Clin Oral Implants Res 16(1):36–43

    Article  PubMed  Google Scholar 

  20. Sahrmann P, Ronay V, Hofer D, Attin T, Jung RE, Schmidlin PR (2013) In vitro cleaning potential of three different implant debridement methods. Clin Oral Implants Res. doi: 10.1111/clr.12322

  21. Cochis A, Fini M, Carrassi A, Migliario M, Visai L, Rimondini L (2013) Effect of air polishing with glycine powder on titanium abutment surfaces. Clin Oral Implants Res 24(8):904–909

    Article  PubMed  Google Scholar 

  22. Jones CG (1997) Chlorhexidine: is it still the gold standard? Periodontol 2000(15):55–62

    Article  Google Scholar 

  23. Arweiler NB, Boehnke N, Sculean A, Hellwig E, Auschill TM (2006) Differences in efficacy of two commercial 0.2 % chlorhexidine mouthrinse solutions: a 4-day plaque re-growth study. J Clin Periodontol 33:334–339

    Article  PubMed  Google Scholar 

  24. Flötra L, Gjermo P, Rölla G, Waerhaug J (1972) A 4-month study on the effect of chlorhexidine mouthwashes on 50 soldiers. Scand J Dent Res 80:10–17

    PubMed  Google Scholar 

  25. Schaupp H, Wohnaut H (1978) Disturbances of taste from oral disinfectants. HNO 26:335–341

    PubMed  Google Scholar 

  26. Wilken R, Botha SJ, Grobler A, Germishuys PJ (2001) In vitro cytotoxicity of chlorhexidine gluconate, benzydamine-HCl and povidone iodine mouthrinses on human gingival fibroblasts. SADJ 56:455–460

    PubMed  Google Scholar 

  27. Bhandari M, Adili A, Schemitsch EH (2001) The efficacy of low-pressure lavage with different irrigating solutions to remove adherent bacteria from bone. J Bone Joint Surg Am 83:412–419

    Article  PubMed  Google Scholar 

  28. Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202

    Article  PubMed  Google Scholar 

  29. Erb F, Febvay N, Imbenotte M (1982) Structural investigation of a new organic antiseptic: taurolidine : a spectroscopic study of its stability and equilibria in various solvents. Talanta 29:953–958

    Article  PubMed  Google Scholar 

  30. Browne MK, Leslie GB, Pfirrmann RW (1976) Taurolin, a new chemotherapeutic agent. J Appl Bacteriol 41:363–368

    Article  PubMed  Google Scholar 

  31. Baker DM, Jones JA, Nguyen-Van-Tam JS, Lloyd JH, Morris DL, Bourke JB, Steele RJ, Hardcastle JD (1994) Taurolidine peritoneal lavage as prophylaxis against infection after elective colorectal surgery. Br J Surg 81:1054–1056

    Article  PubMed  Google Scholar 

  32. Simon A, Ammann RA, Wiszniewsky G, Bode U, Fleischhack G, Besuden MM (2008) Taurolidine-citrate lock solution (TauroLock) significantly reduces CVAD-associated grampositive infections in pediatric cancer patients. BMC Infect Dis 8:102

    Article  PubMed Central  PubMed  Google Scholar 

  33. Koldehoff M, Zakrzewski JL (2004) Taurolidine is effective in the treatment of central venous catheter-related bloodstream infections in cancer patients. Int J Antimicrob Agents 24:491–495

    Article  PubMed  Google Scholar 

  34. Eick S, Radakovic S, Pfister W, Nietzsche S, Sculean A (2012) Efficacy of taurolidine against periodontopathic species—an in vitro study. Clin Oral Investig 16(3):735–744

    Article  PubMed  Google Scholar 

  35. Arweiler NB, Auschill TM, Sculean A (2012) Antibacterial effect of taurolidine (2%) on established dental plaque biofilm. Clin Oral Investig 16(2):499–504

  36. John G, Becker J, Schwarz F (2014) Effects of taurolidine and chlorhexidine on SaOS-2 cells and human gingival fibroblasts grown on implant surfaces. Int J Oral Maxillofac Implants 29(3):728–34

    Article  PubMed  Google Scholar 

  37. Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z, Shull S, Mann K, Rodan GA (1987) Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res 47(18):4961–4966

    PubMed  Google Scholar 

  38. Auschill TM, Arweiler NB, Netuschil L, Brecx M, Reich E, Sculean A, Artweiler NB (2001) Spatial distribution of vital and dead microorganisms in dental biofilms. Arch Oral Biol 46:471–476

    Article  PubMed  Google Scholar 

  39. Hahn R, Netuschil L, Löst C (1992) Initiale Plaquebesiedlung auf keramischen Restaurationsmaterialien. Dtsch Zahnärztl Z 47:330–334

    Google Scholar 

  40. Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, Becker J (2005) Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig 9:111–117

    Article  PubMed  Google Scholar 

  41. John G, Becker J, Schwarz F (2013) Rotating titanium brush for plaque removal from rough titanium surfaces - an in vitro study. Clin Oral Implants Res 25(7):838–42. doi: 10.1111/clr.12147

  42. Rimondini L, Fare S, Brambilla E, Felloni A, Consonni C, Brossa F, Carrassi A (1997) The effect of surface roughness on early in vivo plaque colonization on titanium. J Periodontol 68:556–562

    Article  PubMed  Google Scholar 

  43. Schwarz F, Papanicolau P, Rothamel D, Beck B, Herten M, Becker J (2006) Influence of plaque biofilm removal on reestablishment of the biocompatibility of contaminated titanium surfaces. J Biomed Mater Res A 77:437–444

    Article  PubMed  Google Scholar 

  44. Schwarz F, Nuesry E, Bieling K, Herten M, Becker J (2006) Influence of an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er, Cr:YSGG) laser on the reestablishment of the biocompatibility of contaminated titanium implant surfaces. J Periodontol 77:1820–1827

    Article  PubMed  Google Scholar 

  45. Siegrist BE, Brecx MC, Gusberti FA, Joss A, Lang NP (1991) In vivo early human dental plaque formation on different supporting substances. A scanning electron microscopic and bacteriological study. Clin Oral Implants Res 2:38–46

    Article  PubMed  Google Scholar 

  46. Schroeder HE (1965) Crystal morphology and gross structures of mineralizing plaque and of calculus. Helv Odontol Acta 35:73–86

    Google Scholar 

  47. Quirynen M, van der Mei HC, Bollen CM, Schotte A, Marechal M, Doornbusch GI, Naert I, Busscher HJ, van Steenberghe D (1993) An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J Dent Res 72:1304–1309

    Article  PubMed  Google Scholar 

  48. Rams TE, Roberts TW, Tatum H Jr, Keyes PH (1984) The subgingival microbial flora associated with human dental implants. J Prosthet Dent 51:529–534

    Article  PubMed  Google Scholar 

  49. Maehara Y, Anai H, Tamada R, Sugimachi K (1987) The ATP assay is more sensitive than the succinate dehydrogenase inhibition test for predicting cell viability. Eur J Cancer Clin Oncol 23:273–276

    Article  PubMed  Google Scholar 

  50. Ahmad M, McCarthy MB, Gronowicz G (1999) An in vitro model for mineralization of human osteoblast-like cells on implant materials. Biomaterials 20:211–220

    Article  PubMed  Google Scholar 

  51. Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88

    Article  PubMed  Google Scholar 

  52. Petty RD, Sutherland LA, Hunter EM, Cree IA (1995) Comparison of MTT and ATP-based assays for the measurement of viable cell number. J Biolumin Chemilumin 10:29–34

    Article  PubMed  Google Scholar 

  53. Sennerby L, Lekholm U (1993) The soft tissue response to titanium abutments retrieved from humans and reimplanted in rats. A light microscopic study. Clin Oral Implants Res 4:23–27

    Article  PubMed  Google Scholar 

  54. Mengel R, Buns CE, Mengel C, Flores-de-Jacoby L (1998) An in vitro study of the treatment of implant surfaces with different instruments. Int J Oral Maxillofac Implants 13:91–96

    PubMed  Google Scholar 

Download references

Funding

The study was, in part, funded by Geistlich Pharma AG, Wolhusen, Switzerland.

Conflict of interest

The authors declare that they have no conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon John.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, G., Schwarz, F. & Becker, J. Taurolidine as an effective and biocompatible additive for plaque-removing techniques on implant surfaces. Clin Oral Invest 19, 1069–1077 (2015). https://doi.org/10.1007/s00784-014-1337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1337-8

Keywords

Navigation