Skip to main content

Advertisement

Log in

Azithromycin suppresses P. gingivalis LPS-induced pro-inflammatory cytokine and chemokine production by human gingival fibroblasts in vitro

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

Azithromycin is a macrolide antibiotic that appears to have both antibacterial and anti-inflammatory properties. This study aimed to investigate the effect of azithromycin on the production of pro-inflammatory cytokines and chemokines by human gingival fibroblasts (HGF) in vitro.

Materials and methods

The effects of azithromycin (0.1 to 10 μg/mL) on the production of interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), and growth-regulated oncogene (GRO) by human gingival fibroblasts cultured in the presence or absence of Porphyromonas gingivalis lipopolysaccharide (LPS) was studied. Cytokine and chemokine protein levels in the culture supernatant were assessed using a Luminex® multiplex immunoassay.

Results

P. gingivalis LPS induced cytokine/chemokine (IL-6, IL-8, MCP-1, and GRO) protein production in HGFs, and this effect was suppressed by azithromycin at all concentrations tested.

Conclusions

This study demonstrates that azithromycin suppresses P. gingivalis LPS-induced cytokine/chemokine protein production in HGF, which may explain some of the clinical benefits observed with the adjunctive use of azithromycin in the treatment of periodontitis.

Clinical relevance

The current study examines the anti-inflammatory properties of azithromycin which may make it useful as an adjunct treatment to periodontitis. Specifically, we used azithromycin to modulate the production of pro-inflammatory cytokines by gingival fibroblasts known to be important in periodontal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Di Benedetto A, Gigante I, Colucci S, Grano M (2013) Periodontal disease: linking the primary inflammation to bone loss. Clin Dev Immunol 2013:503754

    Article  PubMed Central  PubMed  Google Scholar 

  2. Greenstein G (1992) Periodontal response to mechanical non-surgical therapy: a review. J Periodontol 63:118–130

    Article  PubMed  Google Scholar 

  3. Drisko CH (2001) Nonsurgical periodontal therapy. Periodontol 2000(25):77–88

    Article  Google Scholar 

  4. Gomi K, Yashima A, Nagano T, Kanazashi M, Maeda N, Arai T (2007) Effects of full-mouth scaling and root planing in conjunction with systemically administered azithromycin. J Periodontol 78:422–429

    Article  PubMed  Google Scholar 

  5. Heitz-Mayfield LJ (2009) Systemic antibiotics in periodontal therapy. Aust Dent J 54(Suppl 1):S96–S101

    Article  PubMed  Google Scholar 

  6. Preshaw PM (2008) Host response modulation in periodontics. Periodontol 2000(48):92–110

    Article  Google Scholar 

  7. Pajukanta R (1993) In vitro antimicrobial susceptibility of Porphyromonas gingivalis to azithromycin, a novel macrolide. Oral Microbiol Immunol 8:325–326

    Article  PubMed  Google Scholar 

  8. Pajukanta R, Asikainen S, Saarela M, Alaluusua S, Jousimies-Somer H (1992) In vitro activity of azithromycin compared with that of erythromycin against Actinobacillus actinomycetemcomitans. Antimicrob Agents Chemother 36:1241–1243

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bartold PM, du Bois AH, Gannon S, Haynes DR, Hirsch RS (2013) Antibacterial and immunomodulatory properties of azithromycin treatment implications for periodontitis. Inflammopharmacology 21:321–338

    Article  PubMed  Google Scholar 

  10. Hirsch R, Deng H, Laohachai MN (2012) Azithromycin in periodontal treatment: more than an antibiotic. J Periodontal Res 47:137–148

    Article  PubMed  Google Scholar 

  11. Muniz FW, de Oliveira CC, de Sousa CR, Moreira MM, de Moraes ME, Martins RS (2013) Azithromycin: a new concept in adjuvant treatment of periodontitis. Eur J Pharmacol 705:135–139

    Article  PubMed  Google Scholar 

  12. Hirsch R (2010) Periodontal healing and bone regeneration in response to azithromycin. Aust Dent J 55:193–199

    Article  PubMed  Google Scholar 

  13. Schmidt EF, Bretz WA (2007) Benefits of additional courses of systemic azithromycin in periodontal disease case report. N Y State Dent J 73:40–45

    PubMed  Google Scholar 

  14. Altenburg J, de Graaff CS, van der Werf TS, Boersma WG (2011) Immunomodulatory effects of macrolide antibiotics—part 1: biological mechanisms. Respir Int Rev Thorac Dis 81:67–74

    Google Scholar 

  15. Kudoh S, Uetake T, Hagiwara K, Hirayama M, Hus LH, Kimura H, Sugiyama Y (1987) Clinical effects of low-dose long-term erythromycin chemotherapy on diffuse panbronchiolitis. Nihon Kyobu Shikkan Gakkai Zasshi 25:632–642

    PubMed  Google Scholar 

  16. Bartold PM, Van Dyke TE (2013) Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol 2000(62):203–217

    Article  Google Scholar 

  17. Kamemoto A, Ara T, Hattori T, Fujinami Y, Imamura Y, Wang PL (2009) Macrolide antibiotics like azithromycin increase lipopolysaccharide-induced IL-8 production by human gingival fibroblasts. Eur J Med Res 14:309–314

    Article  PubMed Central  PubMed  Google Scholar 

  18. Gannon SC, Cantley MD, Haynes DR, Hirsch R, Bartold PM (2013) Azithromycin suppresses human osteoclast formation and activity in vitro. J Cell Physiol 228:1098–1107

    Article  PubMed  Google Scholar 

  19. Takashiba S, Naruishi K, Murayama Y (2003) Perspective of cytokine regulation for periodontal treatment: fibroblast biology. J Periodontol 74:103–110

    Article  PubMed  Google Scholar 

  20. Scheres N, Laine ML, de Vries TJ, Everts V, van Winkelhoff AJ (2010) Gingival and periodontal ligament fibroblasts differ in their inflammatory response to viable Porphyromonas gingivalis. J Periodontal Res 45:262–270

    Article  PubMed  Google Scholar 

  21. Morandini AC, Sipert CR, Gasparoto TH, Greghi SL, Passanezi E, Rezende ML, Sant’ana AP, Campanelli AP, Garlet GP, Santos CF (2010) Differential production of macrophage inflammatory protein-1alpha, stromal-derived factor-1, and IL-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide from P. gingivalis. J Periodontol 81:310–317

    Article  PubMed  Google Scholar 

  22. Ara T, Kurata K, Hirai K, Uchihashi T, Uematsu T, Imamura Y, Furusawa K, Kurihara S, Wang PL (2009) Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res 44:21–27

    Article  PubMed  Google Scholar 

  23. Jonsson D, Amisten S, Bratthall G, Holm A, Nilsson BO (2009) LPS induces GROalpha chemokine production via NF-kappaB in oral fibroblasts. Inflamm Res 58:791–796

    Article  PubMed  Google Scholar 

  24. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303

    PubMed  Google Scholar 

  25. Wada N, Maeda H, Yoshimine Y, Akamine A (2004) Lipopolysaccharide stimulates expression of osteoprotegerin and receptor activator of NF-kappa B ligand in periodontal ligament fibroblasts through the induction of interleukin-1 beta and tumor necrosis factor-alpha. Bone 35:629–635

    Article  PubMed  Google Scholar 

  26. Mogi M, Otogoto J, Ota N, Inagaki H, Minami M, Kojima K (1999) Interleukin 1 beta, interleukin 6, beta 2-microglobulin, and transforming growth factor-alpha in gingival crevicular fluid from human periodontal disease. Arch Oral Biol 44:535–539

    Article  PubMed  Google Scholar 

  27. Fitzsimmons TR, Sanders AE, Slade GD, Bartold PM (2009) Biomarkers of periodontal inflammation in the Australian adult population. Aust Dent J 54:115–122

    Article  PubMed  Google Scholar 

  28. Yu X, Graves DT (1995) Fibroblasts, mononuclear phagocytes, and endothelial cells express monocyte chemoattractant protein-1 (MCP-1) in inflamed human gingiva. J Periodontol 66:80–88

    Article  PubMed  Google Scholar 

  29. Wang PL, Ohura K, Fujii T, Oido-Mori M, Kowashi Y, Kikuchi M, Suetsugu Y, Tanaka J (2003) DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun 305:970–973

    Article  PubMed  Google Scholar 

  30. Wada N, Wang B, Lin NH, Laslett AL, Gronthos S, Bartold PM (2011) Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res 46:438–447

    Article  PubMed  Google Scholar 

  31. Gomi K, Yashima A, Iino F, Kanazashi M, Nagano T, Shibukawa N, Ohshima T, Maeda N, Arai T (2007) Drug concentration in inflamed periodontal tissues after systemically administered azithromycin. J Periodontol 78:918–923

    Article  PubMed  Google Scholar 

  32. Lai PC, Ho W, Jain N, Walters JD (2011) Azithromycin concentrations in blood and gingival crevicular fluid after systemic administration. J Periodontol 82:1582–1586

    Article  PubMed Central  PubMed  Google Scholar 

  33. Malizia T, Tejada MR, Ghelardi E, Senesi S, Gabriele M, Giuca MR, Blandizzi C, Danesi R, Campa M, Del Tacca M (1997) Periodontal tissue disposition of azithromycin. J Periodontol 68:1206–1209

    Article  PubMed  Google Scholar 

  34. Chou CH, Walters JD (2008) Clarithromycin transport by gingival fibroblasts and epithelial cells. J Dent Res 87:777–781

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ho W, Eubank T, Leblebicioglu B, Marsh C, Walters J (2010) Azithromycin decreases crevicular fluid volume and mediator content. J Dent Res 89:831–835

    Article  PubMed Central  PubMed  Google Scholar 

  36. Matsumura Y, Mitani A, Suga T, Kamiya Y, Kikuchi T, Tanaka S, Aino M, Noguchi T (2011) Azithromycin may inhibit interleukin-8 through suppression of Rac1 and a nuclear factor-kappa B pathway in KB cells stimulated with lipopolysaccharide. J Periodontol 82:1623–1631

    Article  PubMed  Google Scholar 

  37. Zhou J, Windsor LJ (2007) Heterogeneity in the collagen-degrading ability of Porphyromonas gingivalis-stimulated human gingival fibroblasts. J Periodontal Res 42:77–84

    Article  PubMed  Google Scholar 

  38. Retsema J, Girard A, Schelkly W, Manousos M, Anderson M, Bright G, Borovoy R, Brennan L, Mason R (1987) Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother 31:1939–1947

    Article  PubMed Central  PubMed  Google Scholar 

  39. Bartold PM, Narayanan AS (2006) Molecular and cell biology of healthy and diseased periodontal tissues. Periodontol 2000(40):29–49

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Australian Dental Research Foundation (Project Grant 35/2012).

Conflict of interest

The authors of this study have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Bartold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyle, C.J., Fitzsimmons, T.R., Marchant, C. et al. Azithromycin suppresses P. gingivalis LPS-induced pro-inflammatory cytokine and chemokine production by human gingival fibroblasts in vitro. Clin Oral Invest 19, 221–227 (2015). https://doi.org/10.1007/s00784-014-1249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1249-7

Keywords

Navigation