Skip to main content
Log in

Extreme at-the-money skew in a local volatility model

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We consider a local volatility model, with volatility taking two possible values, depending on the value of the underlying with respect to a fixed threshold. When the threshold is taken at the money, we establish exact pricing formulas for European call options and compute short-time asymptotics of the implied volatility surface. We derive an exact formula for the at-the-money implied volatility skew which explodes as \(T^{-1/2}\), reproducing the empirical steep short end of the smile. This behaviour is a consequence of the singularity of the local volatility at the money. Finally, we look at continuous, non-differentiable versions of such a model. We still find, in simulations, exploding implied skews.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abate, J., Choudhury, G.L., Whitt, W.: An introduction to numerical transform inversion and its application to probability models. In: Grassmann, W.K. (ed.) Computational Probability, pp. 257–323. Springer, Boston (2000)

    Chapter  Google Scholar 

  2. Alòs, E., León, J.A., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571–589 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayer, C., Friz, P.K., Gatheral, J.: Pricing under rough volatility. Quant. Finance 16, 887–904 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bayer, C., Friz, P.K., Gulisashvili, A., Horvath, B., Stemper, B.: Short-time near-the-money skew in rough fractional volatility models. Quant. Finance 19, 779–798 (2019)

    Article  MathSciNet  Google Scholar 

  5. Berestycki, H., Busca, J., Florent, I.: Asymptotics and calibration of local volatility models. Quant. Finance 2, 61–69 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodurtha, J., Jermakyan, M.: Nonparametric estimation of an implied volatility surface. J. Comput. Finance 2(4), 29–60 (1999)

    Article  Google Scholar 

  7. Breiman, L.: Probability. Classics in Applied Mathematics, vol. 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    Book  MATH  Google Scholar 

  8. Caravenna, F., Corbetta, J.: The asymptotic smile of a multiscaling stochastic volatility model. Stoch. Process. Appl. 128, 1034–1071 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C.W.S., So, M.K.P., Liu, F.-C.: A review of threshold time series models in finance. Stat. Interface 4, 167–181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chi, Z., Dong, F., Wong, H.Y.: Option pricing with threshold mean reversion. J. Futures Mark. 37, 107–131 (2017)

    Article  Google Scholar 

  11. Decamps, M., Goovaerts, M., Schoutens, W.: Self exciting threshold interest rates models. Int. J. Theor. Appl. Finance 9, 1093–1122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dereudre, D., Mazzonetto, S., Roelly, S.: Exact simulation of Brownian diffusions with drift admitting jumps. SIAM J. Sci. Comput. 39, A711–A740 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dupire, B.: Pricing with a smile. Risk 7(1), 18–20 (1994)

    Google Scholar 

  14. Engelmann, B., Koster, F., Oeltz, D.: Calibration of the Heston stochastic local volatility model: a finite volume scheme. Preprint (2011). Available online at http://ssrn.com/abstract=1823769

  15. Étoré, P.: On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients. Electron. J. Probab. 11, 249–275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Étoré, P., Martinez, M.: Exact simulation for solutions of one-dimensional stochastic differential equations with discontinuous drift. ESAIM Probab. Stat. 18, 686–702 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Figueroa-López, J.E., Olafsson, S.: Short-time asymptotics for the implied volatility skew under a stochastic volatility model with Lévy jumps. Finance Stoch. 20, 973–1020 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friz, P.K., Gerhold, S., Yor, M.: How to make Dupire’s local volatility work with jumps. Quant. Finance 14, 1327–1331 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fukasawa, M.: Normalization for implied volatility. Preprint (2010). Available online at https://arxiv.org/abs/1008.5055

  20. Fukasawa, M.: Asymptotic analysis for stochastic volatility: martingale expansion. Finance Stoch. 15, 635–654 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fukasawa, M.: Short-time at-the-money skew and rough fractional volatility. Quant. Finance 17, 189–198 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gairat, A., Shcherbakov, V.: Density of skew Brownian motion and its functionals with application in finance. Math. Finance 27, 1069–1088 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gatheral, J.: The Volatility Surface: A Practitioner’s Guide. Wiley, New York (2011)

    Google Scholar 

  24. Gatheral, J., Hsu, E.P., Laurence, P., Ouyang, C., Wang, T.-H.: Asymptotics of implied volatility in local volatility models. Math. Finance 22, 591–620 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gerhold, S., Gülüm, I.C., Pinter, A.: Small-maturity asymptotics for the at-the-money implied volatility slope in Lévy models. Appl. Math. Finance 23, 135–157 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guyon, J.: Path-dependent volatility. Risk Mag. 2014, 52–58 (2014)

    Google Scholar 

  27. Guyon, J., Henry-Labordère, P.: The smile calibration problem solved. Preprint (2011). Available online at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1885032

  28. Gyöngy, I.: Mimicking the one-dimensional marginal distributions of processes having an Ito differential. Probab. Theory Relat. Fields 71, 501–516 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Itô, K., McKean, H.P. Jr.: Diffusion Processes and Their Sample Paths, 2nd edn. Springer, Berlin (1974)

    MATH  Google Scholar 

  30. Kasahara, Y.: Tauberian theorems of exponential type. J. Math. Kyoto Univ. 18, 209–219 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Keilson, J., Wellner, J.A.: Oscillating Brownian motion. J. Appl. Probab. 15, 300–310 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Le Gall, J.-F.: One-dimensional stochastic differential equations involving the local times of the unknown process. In: Truman, A., Williams, D. (eds.) Stochastic Analysis and Applications, Swansea, 1983. Lecture Notes in Math., vol. 1095, pp. 51–82. Springer, Berlin (1984)

    Chapter  Google Scholar 

  33. Lee, R.W.: Implied volatility: statics, dynamics, and probabilistic interpretation. In: Baeza-Yates, R., et al. (eds.) Recent Advances in Applied Probability, pp. 241–268. Springer, New York (2005)

    Chapter  Google Scholar 

  34. Lejay, A.: On the constructions of the skew Brownian motion. Probab. Surv. 3, 413–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lejay, A., Lenôtre, L., Pichot, G.: One-dimensional skew diffusions: explicit expressions of densities and resolvent kernel. Research Report (2015). Available online at https://hal.inria.fr/hal-01194187v2/

  36. Lejay, A., Martinez, M.: A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Ann. Appl. Probab. 16, 107–139 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lejay, A., Pichot, G.: Simulating diffusion processes in discontinuous media. J. Comput. Phys. 231, 7299–7314 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lejay, A., Pigato, P.: Statistical estimation of the oscillating Brownian motion. Bernoulli 24, 3568–3602 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lejay, A., Pigato, P.: A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data. Int. J. Theor. Appl. Finance 22(04), 1–24 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Linetsky, V., Mendoza, R.: The constant elasticity of variance model. In: Cont, R. (ed.) Encyclopedia of Quantitative Finance, pp. 328–334. Wiley, Chichester (2010)

    Google Scholar 

  41. Lipton, A.: The vol smile problem. Risk Mag. 2002, 61–65 (2002)

    Google Scholar 

  42. Lipton, A.: Oscillating Bachelier and Black–Scholes formulas. In: Lipton, A. (ed.) Financial Engineering—Selected Works of Alexander Lipton, pp. 371–394. World Scientific, Singapore (2018)

    Chapter  Google Scholar 

  43. Lipton, A., Sepp, A.: Filling the gaps. Risk Mag. 2011, 66–71 (2011)

    Google Scholar 

  44. Medvedev, A., Scaillet, O.: Approximation and calibration of short-term implied volatilities under jump-diffusion stochastic volatility. Rev. Financ. Stud. 20, 427–459 (2007)

    Article  Google Scholar 

  45. Mijatović, A., Tankov, P.: A new look at short-term implied volatility in asset price models with jumps. Math. Finance 26, 149–183 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mota, P.P., Esquível, M.L.: On a continuous time stock price model with regime switching, delay, and threshold. Quant. Finance 14, 1479–1488 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Neuman, E., Rosenbaum, M.: Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint. Electron. Commun. Probab. 23, 1–12 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ng, E.W., Geller, M.: A table of integrals of the error functions. J. Res. Natl. Bur. Stand. 73B(1), 1–20 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pai, J., Pedersen, H.: Threshold models of the term structure of interest rate. In: Joint Day Proceedings Volume of the XXXth International ASTIN Colloquium/9th International AFIR Colloquium, Tokyo, Japan, pp. 387–400 (1999)

    Google Scholar 

  50. Piterbarg, V.: Markovian projection method for volatility calibration. Risk Mag. 2007, 84–89 (2007)

    Google Scholar 

  51. Puri, P., Kythe, P.K.: Some inverse Laplace transforms of exponential form. Z. Angew. Math. Phys. 39(2), 150–156 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rogers, L.C.G., Diffusions, D.W.: Markov Processes and Martingales, vol 2: Itô Calculus, 2nd edn. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  53. Rossello, D.: Arbitrage in skew Brownian motion models. Insur. Math. Econ. 50, 50–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tong, H.: Threshold Models in Nonlinear Time Series Analysis. Lecture Notes in Statistics, vol. 21. Springer, New York (1983)

    Book  MATH  Google Scholar 

  55. Van der Stoepc, A.W., Grzelak, L.A., Oosterlee, C.W.: The Heston stochastic-local volatility model: efficient Monte Carlo simulation. Int. J. Theor. Appl. Finance 17(07), 1–30 (2014)

    MathSciNet  Google Scholar 

  56. Yan, S.: Jump risk, stock returns and slope of implied volatility smile. J. Financ. Econ. 99, 216–233 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pigato.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author gratefully acknowledges financial support from ERC via Grant CoG-683164.

The author is grateful to Peter K. Friz, Masaaki Fukasawa and Antoine Lejay for discussion and useful comments and to two anonymous reviewers for their suggestions.

Appendix: Auxiliary computations

Appendix: Auxiliary computations

Lemma A.1

Recall\(G\)in (2.5) and\(Z\)in (3.8). For all\(b,c \in \mathbb{R}\), \(t>0\), we have the limit

$$ \lim _{a\downarrow 0}\partial _{a} G(t,a,b,c)=-\frac{c+b}{2\sqrt{bc}}-t \sqrt{bc}+Z\big(t,\max (b,c),\min (b,c)\big). $$

Proof

From the definition of \(G\), we get

$$\begin{aligned} &\partial _{a} G(t,a,b,c) \\ &=- \frac{1}{\pi }\bigg( \int _{0}^{\infty }\frac{ \sin (a\sqrt{ z}) \sqrt{z} }{\sqrt{z+b-c}} \frac{(b+z)tc+(\exp (-(b+z)t)-1)(c-b-z)}{(b+z)^{2}} dz \\ & \phantom{=:-\frac{1}{\pi }\bigg(}{}+\int _{0}^{b-c} \frac{\exp (-a \sqrt{b-c-z}) \sqrt{b-c-z}}{\sqrt{z}} \\ & \phantom{=:-\frac{1}{\pi }\bigg(+\int _{0}^{b-c}}{} \times \frac{(c+z)tc-z(\exp (-(c+z)t)-1)}{(c+z)^{2}} dz \bigg). \end{aligned}$$
(A.1)

Since \(\lim _{a\downarrow 0}\sin (a\sqrt{z})=0\), the integrable factors multiplying the \(\sin (\cdot )\) function give a vanishing contribution in the limit due to dominated convergence. So we get

$$\begin{aligned} &\lim _{a\downarrow 0}\int _{0}^{\infty }\sin (a\sqrt{ z})\frac{ \sqrt{z} }{\sqrt{z+b-c}} \frac{(b+z)tc+(\exp (-(b+z)t)-1)(c-b-z)}{(b+z)^{2}} dz \\ &=\lim _{a\downarrow 0}\int _{0}^{\infty }\sin (a\sqrt{ z})\frac{ \sqrt{z} }{\sqrt{z+b-c}} \frac{(b+z)tc+b+z}{(b+z)^{2}} dz \\ &= \lim _{a\downarrow 0} \int _{0}^{\infty }\sin (a\sqrt{ z}) \frac{tc+1}{b+z} dz \\ &=\pi (tc+1). \end{aligned}$$
(A.2)

In case \(b=c\), the second integral in (A.1) vanishes and

$$ \lim _{a\downarrow 0} \partial _{a} G(t,a,b,c)=- tb-1=-tc-1. $$
(A.3)

We suppose now that \(b> c\) and compute the limit for \(a\downarrow 0\) of the second integral. We have

$$ \begin{aligned} &\lim _{a\downarrow 0} \int _{0}^{b-c}\exp (-a\sqrt{b-c-z}) \frac{ \sqrt{b-c-z}}{\sqrt{z}} \frac{(c+z)tc-z(\exp (-(c+z)t)-1)}{(c+z)^{2}} dz \\ &=t\int _{0}^{b-c} \frac{\sqrt{b-c-z}}{\sqrt{z}}+ \int _{0}^{b-c} \sqrt{(b-c-z)z} \frac{1-\exp (-(c+z)t)-(c+z)t}{(c+z)^{2}} dz. \end{aligned} $$

With the change of variables \(c+z=u\), we have

$$ \int _{0}^{b-c} \frac{\sqrt{b-c-z}}{\sqrt{z}} dz = \int _{c}^{b}\sqrt{ \frac{b-u}{u-c}} du = \frac{t\pi (b-c)}{2} $$

and

$$\begin{aligned} &\int _{0}^{b-c} \sqrt{(b-c-z)z} \frac{1-\exp (-(c+z)t)-(c+z)t}{(c+z)^{2}} dz \\ &= \int _{c}^{b} \sqrt{\Big(\frac{b}{u}-1\Big)\Big(1-\frac{c}{u} \Big)} \frac{1-\exp (-ut)-ut}{u} du. \end{aligned}$$

Now,

$$ t\int _{c}^{b}\sqrt{\Big(\frac{b}{u}-1\Big)\Big(1-\frac{c}{u}\Big)}du =\pi \bigg(\frac{c+b}{2}-\sqrt{bc}\bigg)t $$

and

$$ \int _{c}^{b}\sqrt{\Big(\frac{b}{u}-1\Big)\Big(1-\frac{c}{u}\Big)} \frac{du}{u} =\pi \bigg(\frac{c+b}{2\sqrt{bc}}-1\bigg). $$
(A.4)

Therefore,

$$\begin{aligned} &\int _{c}^{b} \sqrt{\Big(\frac{b}{u}-1\Big)\Big(1-\frac{c}{u}\Big)} \frac{1-\exp (-ut)-ut}{u} du \\ &= \pi \bigg(\frac{c+b}{2\sqrt{bc}}-1-\Big(\frac{c+b}{2}- \sqrt{bc}\Big)t-Z(t,b,c)\bigg). \end{aligned}$$

Recalling also (A.3), we have

$$ \lim _{a\downarrow 0}\partial _{a} G(t,a,b,c)=-\frac{c+b}{2\sqrt{bc}}-t \sqrt{bc}+Z(t,b,c) . $$

Suppose now \(c>b\). In this case, it is not clear from (2.5) that \(G\) is a real function. For this choice of parameters, \(G\) can be rewritten with standard manipulations as

$$\begin{aligned} &G(t,a,b,c) \\ &= \frac{1}{\pi }\bigg( \int _{c-b}^{\infty }\frac{\cos (a\sqrt{z}) }{\sqrt{z+b-c}} \frac{(b+z)tc+(\exp (-(b+z)t)-1)(c-b-z)}{(b+z)^{2}} dz \\ & \phantom{=:\frac{1}{\pi }\bigg(}{}+\int _{0}^{c-b} \frac{\sin (a \sqrt{z}) }{\sqrt{-z-b+c}} \frac{(b+z)tc+(\exp (-(b+z)t)-1)(c-b-z)}{(b+z)^{2}} dz \bigg). \end{aligned}$$
(A.5)

In this form, one can see that \(G\) is a real function. Completely analogous computations can be made starting from (A.5). One can show that

$$\begin{aligned} &\partial _{a} G(t,a,b,c) \\ &= \frac{1}{\pi }\bigg( -\int _{c-b}^{\infty }\frac{ \sin (a \sqrt{ z})\sqrt{z} }{\sqrt{z+b-c}} \frac{(b+z)tc+(\exp (-(b+z)t)-1)(c-b-z)}{(b+z)^{2}} dz \\ & \phantom{=:\frac{1}{\pi }\bigg(}{}+\int _{0}^{c-b} \frac{\cos (a \sqrt{z})\sqrt{z}}{\sqrt{c-b-z}} \frac{(b+z)tc+(c-b-z)(\exp (-(b+z)t)-1)}{(b+z)^{2}} dz \bigg) \end{aligned}$$
(A.6)

and

$$\begin{aligned} &\lim _{a\downarrow 0} \int _{0}^{c-b}\cos (a\sqrt{z}) \frac{ \sqrt{z}}{\sqrt{c-b-z}} \frac{(b+z)tc+(c-b-z)(\exp (-(b+z)t)-1)}{(b+z)^{2}} dz \\ & =\pi \left (tc+1-\sqrt{bc}-\frac{b+c}{2\sqrt{cb}} +Z(t,c,b)\right ). \end{aligned}$$
(A.7)

From (A.2), (A.6) and (A.7) (it clearly does not matter if the lower integration bound in the first integral is 0 or \(c-b\)), we get

$$ \lim _{a\downarrow 0}\partial _{a} G(t,a,b,c)=-\frac{c+b}{2\sqrt{bc}}-t \sqrt{bc}+Z(t,c,b). $$

Therefore, the statement holds for all \(b,c,t\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigato, P. Extreme at-the-money skew in a local volatility model. Finance Stoch 23, 827–859 (2019). https://doi.org/10.1007/s00780-019-00406-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-019-00406-2

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation