Skip to main content
Log in

Replicating portfolio approach to capital calculation

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

The replicating portfolio (RP) approach to the calculation of capital for life insurance portfolios is an industry standard. The RP is obtained from projecting the terminal loss of discounted asset–liability cash flows on a set of factors generated by a family of financial instruments that can be efficiently simulated. We provide the mathematical foundations and a novel dynamic and path-dependent RP approach for real-world and risk-neutral sampling. We show that our RP approach yields asymptotically consistent capital estimators if the chaotic representation property holds. We illustrate the tractability of the RP approach by three numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. There is no such relation between \(C_{1}^{{\mathbb {P}}}\) and \(C_{2}^{{\mathbb {P}}}\). For example, let \(D_{T}/D_{1}\) be such that we have \({\mathbb {E}}^{\mathbb {P}} [D_{T}^{2}/D_{1}^{2}\mid{\mathcal {F}}_{1} ]=1/D_{1}^{2}\) and assume that \({\mathbb {E}}^{\mathbb {P}}[1/D_{1}^{2} ]=\infty\). Then \(C_{1}^{{\mathbb {P}}}=1\), but \(C_{2}^{{\mathbb {P}}}=\infty\). Conversely, assume that \(D_{T}=D_{1}\) and \({\mathbb {E}}^{\mathbb {P}}[D_{1}^{2} ]=\infty\). Then \(C_{2}^{{\mathbb {P}}}=1\), but \(C_{1}^{{\mathbb {P}}}=\infty\).

  2. The computation of the initial asset–liability value is not the subject of this paper. It could be estimated by the same methods. The value of insurance liabilities in practice includes a risk margin that is determined as cost of future solvency capital for the asset–liability portfolio. For more details, we refer to Filipović [12, Sect. 1].

  3. Formally, we assume that primary and sample random variables \(A(\omega)= A(\omega_{1})\) and \(A^{(j)}(\omega)= A^{(j)}(\omega_{2})\), etc., with \(\omega=(\omega_{1},\omega_{2})\), are modeled on a product space \(\Omega=\Omega'\times\Omega'\), \({\mathcal {F}}= {\mathcal {F}}'\otimes{\mathcal {F}}'\) equipped with product probability measures \({\mathbb {M}}= {\mathbb {M}}'\otimes{\mathbb {M}}'\).

  4. While the rebalancing frequency of a real insurance asset–liability portfolio is adaptive, quarterly rebalancing for the long-term projection is a reasonable assumption.

References

  1. Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Finance 26, 1487–1503 (2002)

    Article  Google Scholar 

  2. Bauer, D., Bergmann, D., Kiesel, R.: On the risk-neutral valuation of life insurance contracts with numerical methods in view. ASTIN Bull. 40, 65–95 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beutner, E., Pelsser, A., Schweizer, J.: Fast convergence of regress-later estimates in least squares Monte Carlo. Preprint (2013). Available online at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2328709

  4. Beutner, E., Pelsser, A., Schweizer, J.: Theory and validation of replicating portfolios in insurance risk management. Preprint (2016). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2557368

  5. Broadie, M., Du, Y., Moallemi, C.C.: Risk estimation via regression. Oper. Res. 63, 1077–1097 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cambou, M., Filipović, D.: Model uncertainty and scenario aggregation. Math. Finance 27, 534–567 (2017)

    Article  MathSciNet  Google Scholar 

  7. CEIOPS: QIS5 Technical Specifications. Technical report, Committee of European Insurance and Occupational Pensions Supervisors (2010). Available online at http://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf

  8. Cont, R., Deguest, R., Scandolo, G.: Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance 10, 593–606 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. DAV: Proxy-Modelle für die Risikokapitalberechnung. Technical report, Ausschuss Investment der Deutschen Aktuarvereinigung (DAV) (2015). Available online at https://aktuar.de/unsere-themen/fachgrundsaetze-oeffentlich/2015-07-08_DAV_Ergebnisbericht%20AG%20Aggregation.pdf

  10. Émery, M.: A discrete approach to the chaotic representation property. In: Azéma, J., et al. (eds.) Séminaire de Probabilités, XXXV. Lecture Notes in Math., vol. 1755, pp. 123–138. Springer, Berlin (2001)

    Chapter  Google Scholar 

  11. Émery, M.: Chaotic representation property of certain Azéma martingales. Ill. J. Math. 50(1–4), 395–411 (2006)

    MATH  Google Scholar 

  12. Filipović, D.: Towards a capital model. Lecture Notes. Lecture Notes from the Institute of Actuaries of Belgium (IA|BE) Chair (2016). Available online at https://sfi.epfl.ch/files/content/sites/sfi/files/users/196224/public/brussels_20161201.pdf

  13. Filipović, D., Larsson, M.: Polynomial diffusions and applications in finance. Finance Stoch. 20, 931–972 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  14. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd edn. de Gruyter, Berlin (2011)

    Book  MATH  Google Scholar 

  15. FOPI: Technical Document on the Swiss Solvency Test. Technical report, Swiss Federal Office of Private Insurance (2006). Available online at https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf

  16. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Applications of Mathematics (New York), vol. 53. Springer, New York (2004)

    MATH  Google Scholar 

  17. Gordy, M.B., Juneja, S.: Nested simulation in portfolio risk measurement. Manag. Sci. 56, 1833–1848 (2010)

    Article  MATH  Google Scholar 

  18. Kaina, M., Rüschendorf, L.: On convex risk measures on \(L^{p}\)-spaces. Math. Methods Oper. Res. 69, 475–495 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Krätschmer, V., Schied, A., Zähle, H.: Comparative and qualitative robustness for law-invariant risk measures. Finance Stoch. 18, 271–295 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lacoste, V.: Wiener chaos: a new approach to option hedging. Math. Finance 6, 197–213 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Natolski, J., Werner, R.: Mathematical analysis of different approaches for replicating portfolios. Eur. Actuar. J. 4, 411–435 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Natolski, J., Werner, R.: Improving optimal terminal value replicating portfolios. In: Glau, K., et al. (eds.) Innovations in Quantitative Risk Management: TU München, September 2013, pp. 289–301. Springer, Cham (2015)

    Google Scholar 

  23. Natolski, J., Werner, R.: Mathematical foundation of the replicating portfolio approach. Preprint (2016). Available online at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2771254

  24. Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications (New York). Springer, New York (1995)

    Book  MATH  Google Scholar 

  25. Oechslin, J., Aubry, O., Aellig, M., Käppeli, A., Brönnimann, D., Tandonnet, A., Valois, G.: Replicating embedded options. Life Pensions Risk, February, 47–52 (2007)

    Google Scholar 

  26. Pelsser, A., Schweizer, J.: The difference between LSMC and replicating portfolio in insurance liability modeling. Eur. Actuar. J. 6, 441–494 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  27. van Zwet, W.R.: A strong law for linear functions of order statistics. Ann. Probab. 8, 986–990 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Cambou.

Additional information

We thank Matthias Aellig, Valérie Chavez, Michel Dacorogna, Anthony Davison, Lucio Fernandez-Arjona, Guido Grützner, Victor Iglesias, Stephan Morgenthaler, Antoon Pelsser, Johan Segers, Sonja Sterki, Ralf Werner, and participants at the Oberwolfach Workshop on the Mathematics and Statistics of Quantitative Risk Management 2015, the Versicherungsmathematisches Kolloquium at LMU Munich, the 9th World Congress of the Bachelier Finance Society, Mathematisches Kolloquium at University of Freiburg, the Institute of Actuaries of Belgium (IA|BE) Chair 2016, Swissquant Workshop, the Conference on Innovations in Insurance, Risk and Asset Management at Technical University of Munich, the Zurich–Hannover Workshop on Insurance and Financial Mathematics, the 52nd Actuarial Research Conference at Georgia State University, and two anonymous referees for comments. An early version of this paper was implemented in the Master’s thesis of Haobo Jia, “New Aspects of the Replicating Portfolio for Group Life Insurance”, in the Financial Engineering program at EPFL and carried out at Swiss Life in 2013. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 307465-POLYTE.

Appendix A: Proofs

Appendix A: Proofs

Proof of Lemma 2.1

The first statement follows from the Cauchy–Schwarz inequality. As for the second, we note that

$$ \| {\mathbb {E}}^{\mathbb {Q}}[X \, | \, {\mathcal {F}}_{1} ] \|_{L^{1}({\mathbb {P}})} \le\| X D_{T}/D_{1} \| _{L^{1}({\mathbb {P}})} = \| \sqrt{D_{T}} X \sqrt{D_{T}}/D_{1} \|_{L^{1}({\mathbb {P}})} . $$

Applying the Cauchy–Schwarz inequality to the second and third expressions yields the claim for \({\mathbb {M}}={\mathbb {P}}\) and \({\mathbb {M}}={\mathbb {Q}}\), respectively. □

Proof of Theorem 3.7

The bound (3.6) follows from Lemma 2.1. The bound (3.7) follows similarly, where we write

$$ \| {\mathbb {E}}^{\mathbb {Q}}[{\epsilon^{\mathbb {M}}}\, | \,{\mathcal {F}}_{1}]-{\epsilon^{\mathbb {M}}} \|_{L^{1}({\mathbb {P}} )}\le \| {\epsilon^{\mathbb {M}}} \|_{L^{1}({\mathbb {P}})}+ \| {\mathbb {E}}^{\mathbb {Q}}[{\epsilon^{\mathbb {M}}}\, | \, {\mathcal {F}}_{1}] \| _{L^{1}({\mathbb {P}})} $$

for the ℙ-bound. □

Proof of Lemma 3.8

We have \(K= {\mathrm{ES}}_{\alpha} [ {\mathbb {E}}^{\mathbb {P}}[ Z D_{T}/D_{1}\, | \,{\mathcal {F}}_{1}] ]\). Monotonicity with respect to stochastic order of expected shortfall yields (3.8); see Föllmer and Schied [14, Corollary 4.59]. Using subadditivity of expected shortfall, the other inequalities follow similarly. □

Proof of Theorem 4.2

The theorem follows from combining (2.1) and (2.2) with the LLN (4.2) and (4.4). □

Proof of Theorem 4.3

Assume \(i=1\). Using the Lipschitz property (2.2) of expected shortfall, we derive

$$\begin{aligned} & \| K^{\mathbb {M}}_{1} - \widehat{K^{\mathbb {M}}_{1}} \|_{L^{2}({\mathbb {M}})} \\ &= \| v^{\mathbb {M}}-\widehat{v^{\mathbb {M}}} + {\mathrm{ES}}_{\alpha}[{\phi^{\mathbb {M}}_{A}}{}^{\top}A] - {\mathrm{ES}}_{\alpha} [ \widehat{\phi^{\mathbb {M}}_{A}}{}^{\top}A \, | \, {\mathcal {G}}] \| _{L^{2}({\mathbb {M}})}\\ & \le\|v^{\mathbb {M}}-\widehat{v^{\mathbb {M}}} \|_{L^{2}({\mathbb {M}})}+\frac{1}{1-\alpha} \sqrt {{\mathbb {E}} ^{\mathbb {M}}\Big[ {\mathbb {E}}^{\mathbb {P}}\big[ \big((\phi^{\mathbb {M}}_{A}-\widehat{\phi^{\mathbb {M}} _{A}})^{\top}A \big)^{2}\, \big| \, {\mathcal {G}}\big] \Big] }\\ &= \| v^{\mathbb {M}}-\widehat{v^{\mathbb {M}}} \|_{L^{2}({\mathbb {M}})}+\frac{1}{1-\alpha}\sqrt{ {\mathbb {E}}^{\mathbb {M}} \big[ (\phi^{\mathbb {M}}_{A}-\widehat{\phi^{\mathbb {M}}_{A}})^{\top}{\mathbb {E}}^{\mathbb {P}}[ A A^{\top}]\, (\phi^{\mathbb {M}} _{A}-\widehat{\phi^{\mathbb {M}}_{A}}) \big] }. \end{aligned}$$

The CLT (4.3) and (4.5) now yield the claim. The case \(i=2\) follows similarly. □

Proof of Theorem 4.4

Denote by \(\mu\) the ℙ-distribution of \(X\). We claim that

$$\begin{gathered} \text{$\widehat{\mu}_{n}\longrightarrow\mu$\qquad weakly a.s.} \end{gathered}$$
(A.1)

Let \(f(x)\) be a continuous function with compact support. Write

$$ \int f(x)\,d\widehat{\mu}_{n} = \frac{\frac{1}{n} \sum_{j=1}^{n} f(X^{(j)}) d{\mathbb {P}}/d{\mathbb {M}}^{(j)}}{\frac{1}{n}\sum_{k=1}^{n} d{\mathbb {P}}/d{\mathbb {M}}^{(k)}} . $$

By the law of large numbers, the numerator and denominator converge, with

$$ \frac{1}{n} \sum_{j=1}^{n} f(X^{(j)}) d{\mathbb {P}}/d{\mathbb {M}}^{(j)} \longrightarrow{\mathbb {E}}_{\mathbb {M}}[ f(X) d{\mathbb {P}}/d{\mathbb {M}}]={\mathbb {E}}_{\mathbb {P}}[f(X) ]\qquad\text{a.s.} $$

and

$$ \frac{1}{n}\sum_{k=1}^{n} d{\mathbb {P}}/d{\mathbb {M}}^{(k)} \longrightarrow{\mathbb {E}}_{\mathbb {M}}[d{\mathbb {P}}/d{\mathbb {M}} ]=1\qquad \text{a.s.} $$

Hence

$$ \int f(x)\,d\widehat{\mu}_{n} \longrightarrow\int f(x)\,d\mu\qquad\text{a.s.} $$

As we have \(Xd{\mathbb {P}}/d{\mathbb {M}}\in L^{1}({\mathbb {M}})\) by assumption for expected shortfall \(\rho={\mathrm{ES}}_{\alpha}\), the same convergence holds for \(f(x)=|x|\) so that

$$\begin{gathered} \text{$\int|x|\,d\widehat{\mu}_{n}\longrightarrow\int|x|\,d\mu$\qquad a.s.} \end{gathered}$$
(A.2)

Because the space of continuous functions with compact support is separable, there exists a measurable \(\Omega_{0}\in{\mathcal {F}}\) such that \({\mathbb {M}}[\Omega _{0}]=1\) and such that for each \(\omega\in\Omega_{0}\), the desired properties (A.1) and (A.2), respectively, hold. The theorem now follows directly from (2.1) for \(\rho={\mathrm{VaR}}_{\alpha}\), and by using arguments as in the proof of Krätschmer et al. [19, Theorem 2.6] for \(\rho={\mathrm{ES}}_{\alpha}\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambou, M., Filipović, D. Replicating portfolio approach to capital calculation. Finance Stoch 22, 181–203 (2018). https://doi.org/10.1007/s00780-017-0347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-017-0347-1

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation