Skip to main content
Log in

Improved accuracy of diagnosis of lumbar intra and/or extra-foraminal stenosis by use of three-dimensional MR imaging: comparison with conventional MR imaging

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

The purposes of this study were to assess the reliability of 3-dimensional magnetic resonance (MR) imaging (3D MRI) and conventional MRI (CMRI) for detection of lumbar intra and/or extra-foraminal stenosis (LIEFS) and to compare the diagnostic accuracy of the 2 imaging modalities.

Methods

A total of 60 sets of 3D MR and CMR images from 20 healthy volunteers and 40 LIEFS patients were qualitatively rated according to defined criteria by 3 independent, blinded readers. Kappa statistics were used to characterize intra and inter-reader reliability for qualitative rating of data. Multireader, multicase analysis was used to compare lumbar foraminal stenosis detection between the 2 modalities.

Results

Intra-reader agreement for 3D MRI was excellent, with kappa = 0.90; that for CMRI was good, with kappa = 0.78. Average inter-reader agreement for 3D MRI was good, with kappa = 0.79, whereas that for CMRI was moderate, with kappa = 0.41. Average area under the ROC curve values (1st reading/2nd reading) for detection of lumbar foraminal stenosis using 3D MRI and CMRI were 0.99/0.99 and 0.94/0.92, respectively. Detection of LIEFS with 3D MRI was significantly better than with CMRI (P = 0.0408/0.0294).

Conclusions

These results suggest that CMRI was of limited use for detection of the presence of LIEFS. Isolated imaging with CMRI may risk overlooking the presence of LIEFS. In contrast, reliability of 3D MRI for detection of LIEFS was good. Furthermore, readers’ performance in the diagnosis of LIEFS can be improved by use of 3D MRI. Therefore, 3D MRI is recommended when using imaging for diagnosis of LIEFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burton R, Kirkaldy-Willis W, Yong-Hing K, Heithoff K. Causes of failure of surgery on the lumbar spine. Clin Ortop Relat Res. 1981;157:191–7.

    Google Scholar 

  2. MacNab I. Negative disc exploration: an analysis of the causes of nerve root involvement in sixty-eight patients. J Bone Joint Surg Am. 1971;53(5):891–903.

    CAS  PubMed  Google Scholar 

  3. Kornberg M. Extreme lateral lumbar disc herniations. Spine. 1987;12(6):586–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kunogi J, Hasue M. Diagnosis and operative treatment of intraforaminal and extraforaminal nerve root compression. Spine. 1991;16(11):1312–30.

    Article  CAS  PubMed  Google Scholar 

  5. Cramer GD, Cantu JA, Dorsett RD, Greenstein JS, McGregor M, Howe JE, Glenn WV. Dimension of the lumbar intervertebral foramina as determined from the sagittal plane magnetic resonance imaging scans of 95 normal subjects. J Manipulative Physiol Ther. 2003;26(3):160–70.

    Article  PubMed  Google Scholar 

  6. Taira G, Endo K, Ito K. Diagnosis of lumbar disc herniation by three-dimensional MRI. J Orthop Sci. 1998;3(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  7. Aota Y, Niwa T, Yoshikawa K, Fujiwara A, Asada T, Saito T. Magnetic resonance imaging and magnetic resonance myelography in the presurgical diagnosis of lumbar foraminal stenosis. Spine. 2007;32(8):896–903.

    Article  PubMed  Google Scholar 

  8. Lurie JD, Tosteson AN, Tosteson TD, Carragee E, Carrino J, Kaiser J, Blanco Sequeiros RT, Lecomte AR, Grove MR, Pearson LH, Weinstein JN, Herzog R. Reliability of readings of magnetic resonance imaging features of lumbar spinal stenosis. Spine. 2008;33(14):1605–10.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Byun WM, Jang HW, Kim SW. Three-dimensional magnetic resonance rendering imaging of lumbosacral radiculography in the diagnosis of symptomatic extraforaminal disc herniation with or without foraminal extension. Spine. 2012;37(10):840–4.

    Article  PubMed  Google Scholar 

  10. Jenis LG, An HS. Spine update: lumbar foraminal stenosis. Spine. 2000;25(3):389–94.

    Article  CAS  PubMed  Google Scholar 

  11. Baba H, Uchida K, Maezawa Y, Furusawa N, Okumura Y, Imura S. Microsurgical nerve root canal widening without fusion for lumbosacral intervertebral foraminal stenosis: technical notes and early results. Spinal Cord. 1996;34:644–50.

    Article  CAS  PubMed  Google Scholar 

  12. Wiltse LL, Guyer RD, Spencer CW. Alar transverse process impingement of the L5 spinal nerve: the far-out syndrome. Spine. 1984;9(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  13. Olsewski JM, Simmons EH, Kallen FC, Mendel FC. Evidence from cadavers suggestive of entrapment of fifth lumbar spinal nerves by lumbosacral ligaments. Spine. 1991;16(3):336–47.

    Article  CAS  PubMed  Google Scholar 

  14. Transfeldt EE, Robertson D, Bradfold DS. Ligaments of the lumbosacral spine and their role in possible extraforaminal spinal nerve entrapment and tethering. J Spinal Disord. 1992;6(6):507–12.

    Article  Google Scholar 

  15. Matsumoto M, Chiba K, Nojiri K, Ishikawa M, Toyama Y, Nishikawa Y. Extraforaminal entrapment of the fifth lumbar spinal nerve by osteophytes of the lumbosacral spine. Spine. 2002;27(6):E169–73.

    Article  PubMed  Google Scholar 

  16. Nathan H, Weizenbluth M, Halperin N. The lumbosacral ligament (LSL), with special emphasis on the “lumbosacral tunnel” and the entrapment of the 5th lumbar nerve. Int Orthop. 1982;6(3):197–202.

    Article  CAS  PubMed  Google Scholar 

  17. Raininko R, Manninen H, Battie MC, Gibbons LE, Gill K, Fisher LD. Observer variability in the assessment of disc degeneration on magnetic resonance images of the lumbar and thoracic spine. Spine. 1995;20(9):1029–35.

    Article  CAS  PubMed  Google Scholar 

  18. Dorfman DD, Berbaum KS, Metz CE. Receiver operating characteristic rating analysis: generalization to the population of readers and patients with the jackknife method. Invest Radiol. 1992;27(9):723–31.

    Article  CAS  PubMed  Google Scholar 

  19. Hills SL, Berbaum KS, Metz CE. Recent developments in the Dorfman–Berbaum–Metz procedure for multireader ROC study analysis. Acta Radiol. 2008;15(5):647–61.

    Google Scholar 

  20. Hosmer DW, Lemeshow S. Assessing the fit of the model. In: Hosmer DW, Lemeshow S, editors. Applied logistic regression. 2nd ed. New York: Wiley; 2000. p. 143–202.

    Chapter  Google Scholar 

  21. Speciale AC, Pietrobon R, Urban CW, Richardson WJ, Helms CA, Major N, Enterline D, Hey L, Haglund M, Turner DA. Observer variability in assessing lumbar spinal stenosis severity on magnetic resonance imaging and its relation to cross-sectional spinal canal area. Spine. 2002;27(10):1082–6.

    Article  PubMed  Google Scholar 

  22. Obuchowski NA. ROC analysis. Am J Roentgenol. 2005;184(2):364–72.

    Article  Google Scholar 

  23. Gur D. Technology and practice assessment: in search of a “desirable” statement. Radiology. 2005;234(3):659–60.

    Article  PubMed  Google Scholar 

  24. Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990;72(3):403–8.

    CAS  PubMed  Google Scholar 

  25. Ishimoto Y, Yoshimura N, Muraki S, Yamada H, Nagata K, Hashizume H, Takiguchi N, Minamide A, Oka H, Kawaguchi H, Nakamura K, Akune T, Yoshida M. Associations between radiographic lumbar spinal stenosis and clinical symptoms in the general population: the Wakayama Spine Study. Osteoarthr Cartil. 2013;21(6):783–8.

    Article  CAS  PubMed  Google Scholar 

  26. Ando M, Tamaki T, Kawakami M, Minamide A, Nakagawa Y, Maio K, Enyo Y, Yoshida M. Electrophysiological diagnosis using sensory nerve action potential for the intraforaminal and extraforaminal L5 nerve root entrapment. Eur Spine J. 2013;22(4):833–9.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Iwasaki H, Yoshida M, Yamada H, Hashizume H, Minamide A, Nakagawa Y, Kawai M, Tsutsui S. A new electrophysiological method for the diagnosis of extraforaminal stenosis at L5–S1. Asian Spine J. 2014;8(2):145–9.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Eguchi Y, Ohtori S, Yamashita M, Yamauchi K, Suzuki M, Orita S, Kamoda H, Arai G, Ishikawa T, Miyagi M, Ochiai N, Kishida S, Masuda Y, Ochi S, Kikawa T, Takaso M, Aoki Y, Toyone T, Suzuki T, Takahashi K. Clinical applications of diffusion magnetic resonance imaging of the lumbar foraminal nerve root entrapment. Eur Spine J. 2010;19(11):1874–82.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr Hiroko Ihara, Dr Misato Okouchi, and Mr Yuji Nakao in Wakayama-minami radiology clinic for their technical assistance and for collecting data, and Dr Junji Shiraishi in School of Health Sciences, Kumamoto University for his comment on the study design and interpretation of the data.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamada.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, H., Terada, M., Iwasaki, H. et al. Improved accuracy of diagnosis of lumbar intra and/or extra-foraminal stenosis by use of three-dimensional MR imaging: comparison with conventional MR imaging. J Orthop Sci 20, 287–294 (2015). https://doi.org/10.1007/s00776-014-0677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-014-0677-1

Keywords

Navigation