Skip to main content
Log in

Lysosome-targeted ruthenium(II) complex encapsulated with pluronic® F-127 induces oncosis in A549 cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Transition metal complexes with characteristics of unique packaging in nanoparticles and remarkable cancer cell cytotoxicity have emerged as potential alternatives to platinum-based antitumor drugs. Here we report the synthesis, characterization, and antitumor activities of three new Ruthenium complexes that introduce 5-fluorouracil-derived ligands. Notably, encapsulation of one such metal complex, Ru3, within pluronic® F-127 micelles (Ru3-M) significantly enhanced Ru3 cytotoxicity toward A549 cells by a factor of four. To determine the mechanisms underlying Ru3-M cytotoxicity, additional in vitro experiments were conducted that revealed A549 cell treatment with lysosome-targeting Ru3-M triggered oxidative stress, induced mitochondrial membrane potential depolarization, and drastically reduced intracellular ATP levels. Taken together, these results demonstrated that Ru3-M killed cells mainly via a non-apoptotic pathway known as oncosis, as evidenced by observed Ru3-M-induced cellular morphological changes including cytosolic flushing, cell swelling, and cytoplasmic vacuolation. In turn, these changes together caused cytoskeletal collapse and activation of porimin and calpain1 proteins with known oncotic functions that distinguished this oncotic process from other cell death processes. In summary, Ru3-M is a potential anticancer agent that kills A549 cells via a novel mechanism involving Ru(II) complex triggering of cell death via oncosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Giaj-Levra N, Borghetti P, Bruni A, Ciammella P, Cuccia F, Fozza A, Franceschini D, Scotti V, Vagge S, Alongi F (2022) Current radiotherapy techniques in NSCLC: challenges and potential solutions. Expert Rev Anticancer 20:387–402

    Article  Google Scholar 

  3. Sadeghirad H, Bahrami T, Layeghi SM, Yousefi H, Rezaei M, Hosseini-Fard SR, Radfar P, Warkiani ME, O’Byrne K, Kulasinghe A (2022) Immunotherapeutic targets in non-small cell lung cancer. Immunology. https://doi.org/10.1111/imm.13562

    Article  PubMed  Google Scholar 

  4. Chaft JE, Rimner A, Weder W, Azzoli CG, Kris MG, Cascone T (2021) Evolution of systemic therapy for stages I-III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol 18:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang C, Kang T, Wang X, Song J, Zhang J, Li G (2022) Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front Pharmacol 13:1035217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghosh S (2019) Cisplatin: the first metal based anticancer drug. Bioorg Chem 88:102925

    Article  CAS  PubMed  Google Scholar 

  7. Zheng MH, Bigdeli F, Gao LX, Wu DZ, Yan XW, Hu ML, Morsali A (2020) Synthesis, characterization and DNA binding investigations of a new binuclear Ag(I) complex and evaluation of its anticancer property. Int J Nanomed 15:953–964

    Article  CAS  Google Scholar 

  8. Kozsup M, Zhou X, Farkas E, Bényei AC, Bonnet S, Patonay T, Kónya K, Buglyó P (2021) Synthesis, characterization and cytotoxicity studies of co(III)-flavonolato complexes. J Inorg Biochem 217:111382

    Article  CAS  PubMed  Google Scholar 

  9. Polloni L, Seni Silva AC, Teixeira SC, Azevedo FVPV, Zóia MAP, Silva MSD, Lima PMAP, Correia LIV, Almeida JDC, Silva CVD, Rodrigues Ávila VM, Goulart LRF, Morelli S, Guerra W, Oliveira Júnior RJ (2019) Action of copper(II) complex with β-diketone and 1,10-phenanthroline (CBP-01) on sarcoma cells and biological effects under cell death. Biomed Pharmacother 112:108586

    Article  PubMed  Google Scholar 

  10. Notaro A, Gasser G (2017) Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(II) polypyridyl complexes as anticancer drug candidates. Chem Soc Rev 46:7317–7337

    Article  CAS  PubMed  Google Scholar 

  11. Song XD, Kong X, He SF, Chen JX, Sun J, Chen BB, Zhao JW, Mao ZW (2017) Cyclometalated iridium(III)-guanidinium complexes as mitochondria-targeted anticancer agents. Eur J Med Chem 138:246–254

    Article  CAS  PubMed  Google Scholar 

  12. Mo J, Le Mai NP, Priefer R (2021) Evaluating the mechanisms of action and subcellular localization of ruthenium(II)-based photosensitizers. Eur J Med Chem 225:113770

    Article  CAS  PubMed  Google Scholar 

  13. Zhao J, Li S, Wang X, Xu G, Gou S (2019) Dinuclear organoruthenium complexes exhibiting antiproliferative activity through DNA damage and a reactive-oxygen-species-mediated endoplasmic reticulum stress pathway. Inorg Chem 58:2208–2217

    Article  CAS  PubMed  Google Scholar 

  14. Ilmi R, Tseriotou E, Stylianou P, Christou YA, Georgiades SN (2019) A novel conjugate of bis[((4-bromophenyl)amino)quinazoline], a EGFR-TK Ligand, with a fluorescent Ru(II)-bipyridine complex exhibits specific subcellular localization in mitochondria. Mol Pharm 16:4260–4273

    Article  CAS  PubMed  Google Scholar 

  15. Tian Z, Li J, Zhang S, Xu Z, Yang Y, Kong D, Zhang H, Ge X, Zhang J, Liu Z (2018) Lysosome-targeted chemotherapeutics: half-sandwich ruthenium(II) complexes that are selectively toxic to cancer cells. Inorg Chem 57:10498–10502

    Article  CAS  PubMed  Google Scholar 

  16. Tang DL, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29:347–364

    Article  CAS  PubMed Central  Google Scholar 

  17. Holm TM, Yeo S, Turner KM, Guan JL (2022) Targeting autophagy in thyroid cancer: EMT, apoptosis, and cancer stem cells. Front Cell Dev Biol 10:821855

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F, Zhang L (2022) Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 19:971–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang C, Liu N (2022) Ferroptosis, necroptosis, and pyroptosis in the occurrence and development of ovarian cancer. Front Immunol 13:920059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis, an overview of cell death. Am J Pathol 146:3–15

    CAS  PubMed Central  Google Scholar 

  21. Weerasinghe P, Buja LM (2012) Oncosis: an important non-apoptotic mode of cell death. Exp Mol Pathol 93:302–308

    Article  CAS  PubMed  Google Scholar 

  22. Yao H, Chen S, Deng Z, Tse MK, Matsuda Y, Zhu G (2020) BODI-Pt, a green-light-activatable and carboplatin-based platinum(IV) anticancer prodrug with enhanced activation and cytotoxicity. Inorg Chem 59:11823–11833

    Article  CAS  Google Scholar 

  23. Faustino C, Neto Í, Fonte P, Macedo A (2018) Cytotoxicity and chemotherapeutic potential of natural rosin abietane diterpenoids and their synthetic derivatives. Curr Pharm Des 24:4362–4375

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Xu Y, Gu J, Schlossman SF (1998) A cell surface receptor defined by a mAb mediates a unique type of cell death similar to oncosis. Proc Natl Acad Sci USA 95:6290–6295

    Article  CAS  PubMed Central  Google Scholar 

  25. Liu X, Vleet TV, Schnellmann RG (2004) The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol 44:349–370

    Article  CAS  Google Scholar 

  26. Wragg A, Gill MR, McKenzie L, Glover C, Mowll R, Weinstein JA, Su X, Smythe C, Thomas JA (2015) Serum albumin binding inhibits nuclear uptake of luminescent metal-complex-based DNA imaging probes. Chem Eur J 21:11865–11871

    Article  CAS  PubMed  Google Scholar 

  27. Jarman PJ, Noakes F, Fairbanks S, Smitten K, Griffiths IK, Saeed HK, Thomas JA, Smythe C (2019) Exploring the cytotoxicity, uptake, cellular response, and proteomics of mono-and dinuclear DNA light-switch complexes. J Am Chem Soc 141:2925–2937

    Article  CAS  PubMed  Google Scholar 

  28. Štarha P, Trávníček Z, Vančo J, Dvořák Z (2018) Half-sandwich Ru(II) and Os(II) bathophenanthroline complexes containing a releasable dichloroacetato ligand. Molecules 23:420

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pracharova J, Novohradsky V, Kostrhunova H, Štarha P, Trávníček Z, Kasparkova J, Brabec V (2018) Half-sandwich Os(II) and Ru(II) bathophenanthroline complexes: anticancer drug candidates with unusual potency and a cellular activity profile in highly invasive triple-negative breast cancer cells. Dalton Trans 47:2197–12208

    Article  Google Scholar 

  30. Zheng Y, Zhang DY, Zhang H, Cao JJ, Tan CP, Ji LN, Mao ZW (2018) Photodamaging of mitochondrial DNA to overcome cisplatin resistance by a RuII–PtII bimetallic complex. Chem Eur J 24:18971–18980

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Wang KN, He L, Ji LN, Mao ZW (2020) Synthesis, photophysical and anticancer properties of mitochondria-targeted phosphorescent cyclometalated iridium(III) N-heterocyclic carbene complexes. J Inorg Biochem 205:110976

    Article  CAS  PubMed  Google Scholar 

  32. Puckett CA, Barton JK (2007) Methods to explore cellular uptake of ruthenium complexes. J Am Chem Soc 129:46–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tikum AF, Jeon YJ, Lee JH, Park MH, Bae IY, Kim SH, Lee HJ, Kim J (2018) Cytotoxic and anticancer properties of new ruthenium polypyridyl complexes with different lipophilicities. J Inorg Biochem 180:204–210

    Article  CAS  Google Scholar 

  34. Chen JC, Wang J, Deng YY, Wang T, Miao TF, Li CP, Cai XH, Liu Y, Henri J, Chen LM (2020) Ru(II) complexes bearing o, o-chelated ligands induced apoptosis in A549 cells through the mitochondrial apoptotic pathway. Bioinorg Chem Appl 2020:8890950

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tsukagoshi T, Kondo Y, Yoshino N (2007) Preparation of thin polymer films with drug release and protein adsorption resistance. Colloid Surf B 55:19–25

    Article  CAS  Google Scholar 

  36. Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11:81–91

    Article  Google Scholar 

  37. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823

    Article  CAS  PubMed  Google Scholar 

  38. Wen Y, Ouyang C, Li QW, Rees TW, Qiu KQ, Ji LN, Chao H (2020) Synthesis, characterization and anticancer mechanism studies of fluorinated cyclometalated ruthenium(II) complexes. Dalton Trans 49:7044–7052

    Article  CAS  Google Scholar 

  39. Xu L, Zhang PP, Fang XQ, Liu Y, Wang JQ, Zhou HZ, Chen ST, Chao H (2019) A ruthenium(II) complex containing a p-cresol group induces apoptosis in human cervical carcinoma cells through endoplasmic reticulum stress and reactive oxygen species production. J Inorg Biochem 191:126–134

    Article  CAS  PubMed  Google Scholar 

  40. Obeng E (2021) Apoptosis (programmed cell death) and its signals—a review. Braz J Biol 81:1133–1143

    Article  CAS  PubMed  Google Scholar 

  41. Yan G, Elbadawi M, Efferth T (2020) Multiple cell death modalities and their key features. World Acad Sci J 2:39–48

    Google Scholar 

  42. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  PubMed  Google Scholar 

  43. Kabir SR, Islam J, Ahamed MS, Alam MT (2021) Asparagus racemosus and Geodorum densiflorum lectins induce apoptosis in cancer cells by altering proteins and genes expression. Int J Biol Macromol 191:646–656

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Bao D, Dong Y, Wei X, Yu J, Niu C (2022) α-Lipoic acid-plus ameliorates endothelial injury by inhibiting the apoptosis pathway mediated by intralysosomal cathepsins in an in vivo and in vitro endothelial injury model. Oxid Med Cell Longev 2022:8979904

    PubMed  PubMed Central  Google Scholar 

  45. Li W, Yuan XM, Olsson AG, Brunk UT (1998) Uptake of oxidized LDL by macrophages results in partial lysosomal enzyme inactivation and relocation. Arterioscler Thromb Vasc Biol 18:177–184

    Article  CAS  PubMed  Google Scholar 

  46. Hsu SY, Wen ZH, Shih PC, Kuo HM, Lin SC, Liu HT, Lee YH, Wang YJ, Chen WF, Chen NF (2022) Sinularin induces oxidative stress-mediated apoptosis and mitochondrial dysfunction, and inhibits angiogenesis in glioblastoma cells. Antioxidants (Basel) 11:1433

    Article  CAS  PubMed  Google Scholar 

  47. Harris IS, DeNicola GM (2020) The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol 30:440–451

    Article  CAS  PubMed  Google Scholar 

  48. Yang GG, Zhou DJ, Pan ZY, Yang J, Zhang DY, Cao Q, Ji LN, Mao ZW (2019) Multifunctional low-temperature photothermal nanodrug with in vivo clearance, ROS-scavenging and anti-inflammatory abilities. Biomaterials 216:119280

    Article  CAS  PubMed  Google Scholar 

  49. Rodrigues T, Ferraz LS (2020) Therapeutic potential of targeting mitochondrial dynamics in cancer. Biochem Pharmacol 182:114282

    Article  CAS  PubMed  Google Scholar 

  50. Cho YS (2022) Genipin, an inhibitor of UCP2 as a promising new anticancer agent: a review of the literature. Int J Mol Sci 23:5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang G, Jiang C, Wang Z, Chen W, Gu W, Ding Y (2014) Dehydroabietic acid derivative QC2 induces oncosis in hepatocellular carcinoma cells. Biomed Res Int 2014:682197

    PubMed  PubMed Central  Google Scholar 

  52. Crisby M, Kallin B, Thyberg J, Zhivotovsky B, Orrenius S, Kostulas V, Nilsson J (1997) Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 130:17–27

    Article  CAS  PubMed  Google Scholar 

  53. Ma F, Zhang C, Prasad KV, Freeman GJ, Schlossman SF (2001) Molecular cloning of Porimin, a novel cell surface receptor mediating oncotic cell death. Proc Natl Acad Sci USA 98:9778–9783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang Y, Guo L, Ge X, Zhu T, Chen W, Zhou H, Zhao L, Liu Z (2020) The fluorine effect in zwitterionic half-sandwich iridium(III) anticancer complexes. Inorg Chem 59:748–758

    Article  CAS  Google Scholar 

  55. Chen SW, Xiang R, Liu J, Tian X (2009) Synthesis and biological evaluation of novel conjugates of podophyllotoxin and 5-FU as antineoplastic agents. Bioorg Med Chem 17:3111–3117

    Article  CAS  Google Scholar 

  56. Pan NL, Liao JX, Huang MY, Zhang YQ, Chen JX, Zhang ZW, Yang ZX, Long XE, Wu XT, Sun J (2022) Lysosome-targeted ruthenium(II) complexes induce both apoptosis and autophagy in HeLa cells. J Inorg Biochem 229:111729

    Article  CAS  PubMed  Google Scholar 

  57. Sullivan BP, Salmon DJ, Meyer TJ (1978) Mixed phosphine 2,2′-bipyridine complexes of ruthenium. Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  58. Hartshorn RM, Barton JK (1992) Novel dipyridophenazine complexes of ruthenium(II): exploring luminescent reporters of DNA. J Am Chem Soc 114:5919–5925

    Article  CAS  Google Scholar 

  59. Puckett CA, Barton JK (2008) Mechanism of cellular uptake of a ruthenium polypyridyl complex. Biochemistry-US 47:11711–11716

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Discipline Construction Project of Guangdong Medical University (4SG23004G), Dongguan Science and Technology of Social Development Program (20211800905082), the Key Scientific Research Projects of Colleges and Universities in Guangdong Province (2020ZDZX2031), and Medical Industry Innovation Project of Guangdong Medical University (4SG22305P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xide Chen, Zunnan Huang or Jing Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1821 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, N., Zhang, Y., Huang, M. et al. Lysosome-targeted ruthenium(II) complex encapsulated with pluronic® F-127 induces oncosis in A549 cells. J Biol Inorg Chem (2024). https://doi.org/10.1007/s00775-023-02039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00775-023-02039-5

Keywords

Navigation