Skip to main content
Log in

The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The interactions of drugs with iron are of interest in relation to the potential effects of iron-rich foods and iron supplements on sorption and bioavailability. Doxycycline (DOX), a member of the tetracycline class of broad-spectrum antibiotics, is frequently administered by oral route. In the digestive tract, DOX can be exposed to iron at different pH values (stomach pH 1.5–4, duodenum pH 5–6, distal jejunum and ileum pH 7–8). In relation to this, we analyzed the impact of pH on Fe3+-DOX complex formation. The optimal conditions for Fe3+-DOX complex formation are pH = 4 and [Fe3+]/[DOX] = 6 molar ratio. HESI-MS showed that Fe3+-DOX complex has 1:1 stoichiometry. Raman spectra of Fe3+-DOX complex indicate the presence of two Fe3+-binding sites in DOX structure: tricarbonylamide group of ring A and phenolic-diketone oxygens of BCD rings. The Fe3+-DOX complex formed at pH = 4 is less susceptible to oxidation than DOX at this pH. The increase of pH induces the decomposition of Fe3+-DOX complex without oxidative degradation of DOX. The pH dependence of Fe3+-DOX complex formation may promote unwanted effects of DOX, impeding the absorption that mainly takes place in duodenum. This could further result in higher concentrations in the digestive tract and to pronounced impact on gut microbiota.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Guerra W, Silva-Caldeira PP, Terenzi H, Pereira-Maia CE (2016) Impact of metal coordination on the antibiotic and non-antibiotic activities of tetracycline-based drugs. Coord Chem Rev 327–328:188–199. https://doi.org/10.1016/j.ccr.2016.04.009

    Article  CAS  Google Scholar 

  2. Neuvonen PJ (1976) Interactions with the absorption of tetracyclines. Drugs 11:45–54. https://doi.org/10.2165/00003495-197611010-00004

    Article  CAS  PubMed  Google Scholar 

  3. Grenier D, Huot MP, Mayrand D (2000) Iron-chelating activity of tetracyclines and its impact on the susceptibility of Actinobacillus actinomycetemcomitans to these antibiotics. Antimicrob Agents Chemother 44:763–766. https://doi.org/10.1128/AAC.44.3.763-766.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pradines B, Rogier C, Fusai T, Mosnier J, Daries W, Barret E, Parzy D (2001) In vitro activities of antibiotics against Plasmodium falciparum are inhibited by iron. Antimicrob Agents Chemother 45:1746–1750. https://doi.org/10.1128/AAC.45.6.1746-1750.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Faure ME, Cilibrizzi A, Abbate V, Bruce KD, Hider RC (2021) Effect of iron chelation on anti-pseudomonal activity of doxycycline. Int J Antimicrob Agents 58:106438. https://doi.org/10.1016/j.ijantimicag.2021.106438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Renfrew AK (2014) Transition metal complexes with bioactive ligands: mechanisms for selective ligand release and applications for drug delivery. Metallomics 6:1324–1335. https://doi.org/10.1039/C4MT00069B

    Article  CAS  PubMed  Google Scholar 

  7. Hua S (2020) Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological pathophysiological and pharmaceutical factors. Front Pharmacol 11:524. https://doi.org/10.3389/fphar.2020.00524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paganini D, Uyoga MA, Kortman GAM, Cercamondi CI, Winkler HC, Boekhorst J, Moretti D, Lacroix C, Karanja S, Zimmermann MB (2019) Iron-containing micronutrient powders modify the effect of oral antibiotics on the infant gut microbiome and increase post-antibiotic diarrhoea risk: a controlled study in Kenya. Gut 68:645–653. https://doi.org/10.1136/gutjnl-2018-317399

    Article  CAS  PubMed  Google Scholar 

  9. Cuisiniere T, Calvé A, Fragoso G, Oliero M, Hajjar R, Gonzalez E, Santos MM (2021) Oral iron supplementation after antibiotic exposure induces a deleterious recovery of the gut microbiota. BMC Microbiol 21:259. https://doi.org/10.1186/s12866-021-02320-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murray-Kolb LE, Beard J (2010). In: Coates PM, Betz JM, Blackman MR, Cragg GM, Levine M, Moss J, White JD (eds) Encyclopedia of dietary supplements, 2nd edn. CRC Press

    Google Scholar 

  11. Talarico V, Giancotti L, Mazza GA, Miniero R, Bertini M (2021) Iron deficiency anemia in celiac disease. Nutrients 13:1695. https://doi.org/10.3390/nu13051695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD (1988) Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29:1035–1041. https://doi.org/10.1136/gut.29.8.1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koziolek M, Grimm M, Becker D, Iordanov V, Zou H, Shimizu J, Wanke C, Garbacz G, Weitschies W (2015) Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap (®) system. J Pharm Sci 104:2855–2863. https://doi.org/10.1002/jps.24274

    Article  CAS  PubMed  Google Scholar 

  14. Agwuh KN, MacGowan A (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58:256–265. https://doi.org/10.1093/jac/dkl224

    Article  CAS  PubMed  Google Scholar 

  15. Ovesen L, Bendtsen F, Tage-Jensen U, Pedersen NT, Gram BR, Rune SJ (1986) Intraluminal pH in the stomach, duodenum, and proximal jejunum in normal subjects and patients with exocrine pancreatic insufficiency. Gastroenterology 90:958–962. https://doi.org/10.5555/uri:pii:0016508586908735

    Article  CAS  PubMed  Google Scholar 

  16. Levison ME, Levison JH, Phil M (2009) Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am 23:791–815. https://doi.org/10.1016/j.idc.2009.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pulicharla R, Hegde K, Kaur Brar S, Surampalli RY (2017) Tetracyclines metal complexation: significance and fate of mutual existence in the environment. Environ Pollut 221:1–14. https://doi.org/10.1016/j.envpol.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  18. Carlotti B, Fuoco D, Elisei F (2010) Fast and ultrafast spectroscopic investigation of tetracycline derivatives in organic and aqueous media. Phys Chem Chem Phys 12:15580–15591. https://doi.org/10.1039/c0cp00044b

    Article  CAS  PubMed  Google Scholar 

  19. Duarte HA, Carvalho S, Paniago EB, Simas AM (1999) Importance of tautomers in the chemical behavior of tetracyclines. J Pharm Sci 88:111–120. https://doi.org/10.1021/js980181r

    Article  CAS  PubMed  Google Scholar 

  20. Naidong W, Hua S, Roets E, Busson R, Hoogmartens J (1993) Investigation of keto-enol tautomerism and ionization of doxycycline in aqueous solutions. Int J Pharm 96:13–21. https://doi.org/10.1016/0378-5173(93)90207-V

    Article  CAS  Google Scholar 

  21. Korać Jačić J, Milenković MR, Bajuk-Bogdanović D, Stanković D, Dimitrijević M, Spasojević I (2022) The impact of ferric iron and pH on photo-degradation of tetracycline in water. J Photochem Photobiol A Chem 433:114155. https://doi.org/10.1016/j.jphotochem.2022.114155

    Article  CAS  Google Scholar 

  22. Vartanian VH, Goolsby B, Brodbelt JS (1998) Identification of tetracycline antibiotics by electrospray ionization in a quadrupole ion trap. J Am Soc Mass Spectrom 9:1089–1098. https://doi.org/10.1016/S1044-0305(98)00078-6

    Article  CAS  Google Scholar 

  23. Fortune WB, Mellon MG (1938) Determination of iron with o-phenanthroline: a spectrophotometric study. Ind Eng Chem Anal Ed 10:60–64. https://doi.org/10.1021/ac50118a004

    Article  CAS  Google Scholar 

  24. Leypold CF, Reiher M, Brehm G, Schmitt MO, Schneider S, Matousek SP, Towrie M (2003) Tetracycline and derivatives - assignment of IR and Raman spectra via DFT calculations. Phys Chem Chem Phys 5:1149–1157. https://doi.org/10.1039/B210522E

    Article  CAS  Google Scholar 

  25. Christian EL, Anderson VE, Carey PR, Harris ME (2010) A quantitative Raman spectroscopic signal for metal-phosphodiester interactions in solution. Biochemistry 49:2869–2879. https://doi.org/10.1021/bi901866u

    Article  CAS  PubMed  Google Scholar 

  26. Das B, Voggu R, Rout CS, Rao CN (2008) Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem Commun 41:5155–5157. https://doi.org/10.1039/B808955H

    Article  Google Scholar 

  27. Hester RE, Plane RA (1964) Metal-oxygen bonds in complexes: Raman spectra of trisacetylacetonato and trisoxalato complexes of aluminum, gallium, and indium. Inorg Chem 3:513–517. https://doi.org/10.1021/ic50014a012

    Article  CAS  Google Scholar 

  28. Persson I (2010) Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl Chem 82:1901–1917. https://doi.org/10.1351/PAC-CON-09-10-22

    Article  CAS  Google Scholar 

  29. Carey DM (1998) Measurement of the Raman spectrum of liquid water. J Chem Phys 108:2669–2675. https://doi.org/10.1063/1.475659

    Article  CAS  Google Scholar 

  30. Walrafen GE (1962) Raman spectral studies of the effects of electrolytes on water. J Chem Phys 36:1035–1042. https://doi.org/10.1063/1.1732628

    Article  CAS  Google Scholar 

  31. Fuqua BK, Vulpe CD, Anderson GJ (2012) Intestinal iron absorption. J Trace Elem Med Biol 26:115–119. https://doi.org/10.1016/j.jtemb.2012.03.015

    Article  CAS  PubMed  Google Scholar 

  32. Djaldetti M, Fishman P, Notti I, Bessler H (1981) The effect of tetracycline administration on iron absorption in mice. Biomedicine 35:150–152

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science, Technological Development and Innovation of Republic of Serbia (contract no. 451-03-47/2023-01/200053, 451-03-47/2023-01/200168, 451-03-47/2023-01/200146).

Author information

Authors and Affiliations

Authors

Contributions

JKJ: Writing—original draft, Investigation, Conceptualization, Visualization, Data curation, Supervision. MD: Writing—review and editing, Formal analysis, Data curation. DB-B: Writing—review and editing, Formal analysis, Data curation. DS: Writing—review and editing, Formal analysis, Data curation. SS: Writing—review and editing, Methodology, Formal analysis. IS: Writing—review and editing, Visualization, Conceptualization. MRM: Writing—original draft, Investigation, Conceptualization, Visualization, Data curation, Supervision. All the authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Jelena Korać Jačić or Milica R. Milenković.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 524 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korać Jačić, J., Dimitrijević, M., Bajuk-Bogdanović, D. et al. The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability. J Biol Inorg Chem 28, 679–687 (2023). https://doi.org/10.1007/s00775-023-02018-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-023-02018-w

Keywords

Navigation