Skip to main content

Advertisement

Log in

Nano-inspired smart medicines targeting brain cancer: diagnosis and treatment

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cancer, despite being the bull’s eye for the research community, accounts for a large number of morbidity and mortality. Cancer of the brain is considered the most intractable, with the least diagnosis rates, hence treatment and survival. Despite the extensive development of therapeutic molecules, their targeting to the diseased site is a challenge. Specially tailored nanoparticles can efficiently deliver drugs and genes to the brain to treat tumours and diseases. These nanotechnology-based strategies target the blood–brain barrier, the local space, or a specific cell type. These nanoparticles are preferred over other forms of targeted drug delivery due to the chances for controlled delivery of therapeutic cargo to the intended receptor. Targeted cancer therapy involves using specific receptor-blocking compounds that block the spreading or growth of cancerous cells. This review presents an account of the recent applications of nano-based cancer theragnostic, which deal in conjunct functionalities of nanoparticles for effective diagnosis and treatment of cancer. It commences with an introduction to tumours of the brain and their grades, followed by hurdles in its conventional diagnosis and treatment. The characteristic mechanism of nanoparticles for efficiently tracing brain tumour grade and delivery of therapeutic genes or drugs has been summarised. Nanocarriers like liposomes have been widely used and commercialized for human brain cancer treatment. However, nano-inspired structures await their translational recognition. The green synthesis of nanomaterials and their advantages have been discussed. The article highlights the challenges in the nano-modulation of brain cancer and its future outlook.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Khazaei Z, Goodarzi E, Borhaninejad V et al (2020) The association between incidence and mortality of brain cancer and human development index (HDI): an ecological study. BMC Public Health 20:1696. https://doi.org/10.1186/s12889-020-09838-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaur J, Gulati M, Kapoor B et al (2022) Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chem Biol Interact 361:109960. https://doi.org/10.1016/J.CBI.2022.109960

    Article  CAS  PubMed  Google Scholar 

  3. Mesfin FB, Al-Dhahir MA (2022) Gliomas. StatPearls

    Google Scholar 

  4. Park JH, de Lomana ALG, Marzese DM et al (2021) A systems approach to brain tumor treatment. Cancers (Basel). https://doi.org/10.3390/CANCERS13133152

    Article  PubMed  PubMed Central  Google Scholar 

  5. Belykh E, Shaffer KV, Lin C et al (2020) Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: delivering optical labels to brain tumors. Front Oncol 10:739. https://doi.org/10.3389/FONC.2020.00739/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim HS, Lee DY (2022) Nanomedicine in clinical photodynamic therapy for the treatment of brain tumors. Biomedicines 10:96. https://doi.org/10.3390/biomedicines10010096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyers JD, Doane T, Burda C, Basilion JP (2013) Nanoparticles for imaging and treating brain cancer. Nanomedicine (Lond) 8:123. https://doi.org/10.2217/NNM.12.185

    Article  CAS  PubMed  Google Scholar 

  8. Mostafavi E, Medina-Cruz D, Vernet-Crua A, et al (2021) Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics? 18:715–736. https://doi.org/10.1080/17425247.2021.1865306

  9. Cerna T, Stiborova M, Adam V et al (2016) Nanocarrier drugs in the treatment of brain tumors. J Cancer Metast Treat 2:407–416. https://doi.org/10.20517/2394-4722.2015.95

    Article  CAS  Google Scholar 

  10. Dwivedi N, Shah J, Mishra V et al (2016) Dendrimer-mediated approaches for the treatment of brain tumor. J Biomater Sci Polym Ed 27:557–580. https://doi.org/10.1080/09205063.2015.1133155

    Article  CAS  PubMed  Google Scholar 

  11. Chen Q, Tan K, Lin Q, et al (2022) Nanotechnology: a better diagnosis and treatment strategy for brain tumour? 25:33–47. https://doi.org/10.22186/25.3.1.2

  12. d’Angelo M, Castelli V, Benedetti E et al (2019) Theranostic nanomedicine for malignant gliomas. Front BioengBiotechnol 7:325. https://doi.org/10.3389/FBIOE.2019.00325/BIBTEX

    Article  Google Scholar 

  13. Tzeng SY, Green JJ (2013) Therapeutic nanomedicine for brain cancer. Ther Deliv 4:687–704. https://doi.org/10.4155/tde.13.38

    Article  CAS  PubMed  Google Scholar 

  14. Kadry H, Noorani B, Cucullo L (2020) A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. FluidsBarriers CNS 17:1. https://doi.org/10.1186/S12987-020-00230-3 (17:1–24)

    Article  Google Scholar 

  15. Rhea EM, Banks WA (2019) Role of the blood-brain barrier in central nervous system insulin resistance. Front Neurosci 13:521. https://doi.org/10.3389/FNINS.2019.00521/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fisusi FA, Schätzlein AG, Uchegbu IF (2018) Nanomedicines in the treatment of brain tumors. 13:579–583. https://doi.org/10.2217/NNM-2017-0378

  17. Haque S, Norbert CC, Patra CR (2021) Nanomedicine: future therapy for brain cancers. Nano Drug Deliv Strateg Treat Cancers. https://doi.org/10.1016/B978-0-12-819793-6.00003-5

    Article  Google Scholar 

  18. Wadajkar AS et al (2021) Surface-Modified Nanodrug Carriers for Brain Cancer Treatment. In: Agrahari V, Kim A, Agrahari V (eds) Nanotherapy for Brain Tumor Drug Delivery. Neuromethods, vol 163. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1052-7_5

  19. Gao H (2016) Perspectives on dual targeting delivery systems for brain tumors. J Neuroimmune Pharmacol 12:1. https://doi.org/10.1007/S11481-016-9687-4 (12:6–16)

    Article  Google Scholar 

  20. Gao H (2016) Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6:268–286. https://doi.org/10.1016/J.APSB.2016.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jena LN, Bennie LA, McErlean EM et al (2021) Exploiting the anticancer effects of a nitrogen bisphosphonate nanomedicine for glioblastoma multiforme. J Nanobiotechnology 19:1–18. https://doi.org/10.1186/S12951-021-00856-X/TABLES/2

    Article  Google Scholar 

  22. Kemp JA, Kwon YJ (2021) Cancer nanotechnology: current status and perspectives. Nano Convergence 8:1. https://doi.org/10.1186/S40580-021-00282-7 (8:1–38)

    Article  Google Scholar 

  23. Jena L, McErlean E, McCarthy H (2020) Delivery across the blood-brain barrier: nanomedicine for glioblastoma multiforme. Drug Deliv Transl Res 10:304–318. https://doi.org/10.1007/S13346-019-00679-2/FIGURES/2

    Article  PubMed  Google Scholar 

  24. Hanif S, Muhammad P, Chesworth R et al (2020) Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacolog Sin 41:7. https://doi.org/10.1038/s41401-020-0429-z (41:936–953)

    Article  CAS  Google Scholar 

  25. Tang W, Fan W, Lau J et al (2019) Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 48:2967–3014. https://doi.org/10.1039/C8CS00805A

    Article  CAS  PubMed  Google Scholar 

  26. Ruan S, Zhou Y, Jiang X, Gao H (2021) Rethinking CRITID procedure of brain targeting drug delivery: circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv Sci 8:2004025. https://doi.org/10.1002/ADVS.202004025

    Article  CAS  Google Scholar 

  27. Houston ZH, Bunt J, Chen KS et al (2020) Understanding the uptake of nanomedicines at different stages of brain cancer using a modular nanocarrier platform and precision bispecific antibodies. ACS Cent Sci 6:727–738. https://doi.org/10.1021/ACSCENTSCI.9B01299/ASSET/IMAGES/LARGE/OC9B01299_0004.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van’t Root M, Lowik C, Mezzanotte L (2017) Targeting nanomedicine to brain tumors: latest progress and achievements. Curr Pharm Des 23:1953–1962. https://doi.org/10.2174/1381612822666161227153359

    Article  CAS  Google Scholar 

  29. Liu Y, Liu J, Zhang J et al (2018) Noninvasive brain tumor imaging using red emissive carbonized polymer dots across the blood-brain barrier. ACS Omega 3:7888–7896. https://doi.org/10.1021/ACSOMEGA.8B01169/ASSET/IMAGES/LARGE/AO-2018-011692_0003.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mukhtar M, Bilal M, Rahdar A et al (2020) Nanomaterials for diagnosis and treatment of brain cancer: recent updates. Chemosensors 8:1–31. https://doi.org/10.3390/chemosensors8040117

    Article  CAS  Google Scholar 

  31. Wen CJ, Sung CT, Aljuffali IA et al (2013) Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes. Nanotechnology. https://doi.org/10.1088/0957-4484/24/32/325101

    Article  PubMed  Google Scholar 

  32. Zhang W, Sigdel G, Mintz KJ et al (2021) Carbon dots: A future blood–brain barrier penetrating nanomedicine and drug nanocarrier. Int J Nanomed 16:5003–5016. https://doi.org/10.2147/IJN.S318732

    Article  Google Scholar 

  33. Wu H, Su W, Xu H et al (2021) Applications of carbon dots on tumour theranostics. View 2:20200061. https://doi.org/10.1002/viw.20200061

    Article  CAS  Google Scholar 

  34. Ashrafizadeh M, Mohammadinejad R, Kailasa SK et al (2020) Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: a review. Adv Colloid Interface Sci 278:102123. https://doi.org/10.1016/j.cis.2020.102123

    Article  CAS  PubMed  Google Scholar 

  35. Calabrese G, de Luca G, Nocito G et al (2021) Carbon dots: AN innovative tool for drug delivery in brain tumors. Int J Mol Sci. https://doi.org/10.3390/ijms222111783

    Article  PubMed  PubMed Central  Google Scholar 

  36. Du Y, Qian M, Li C, et al (2018) Facile marriage of Gd3+ to polymer-coated carbon nanodots with enhanced biocompatibility for targeted MR/fluorescence imaging of glioma. Int J Pharm 552:84–90. https://doi.org/10.1016/J.IJPHARM.2018.09.010

  37. Zhao Y, Xie Y, Liu Y et al (2022) Comprehensive exploration of long-wave emission carbon dots for brain tumor visualization. J Mater Chem B. https://doi.org/10.1039/d2tb00322h

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fan Z, Zhou S, Garcia C et al (2017) pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale 9:4928–4933. https://doi.org/10.1039/C7NR00888K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li S, Su W, Wu H et al (2020) Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat Biomed Eng 4:704–716. https://doi.org/10.1038/s41551-020-0540-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Zhou HS (2014) Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem 86:8902–8905. https://doi.org/10.1021/AC502646X/SUPPL_FILE/AC502646X_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  41. Ruan S, Qian J, Shen S et al (2014) A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale 6:10040–10047. https://doi.org/10.1039/C4NR02657H

    Article  CAS  PubMed  Google Scholar 

  42. Sonali VMK, Singh RP et al (2018) Nanotheranostics: Emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics 2:70–86. https://doi.org/10.7150/NTNO.21638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang X, Tu M, Tian B et al (2016) Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells. Anal Biochem 512:8–17. https://doi.org/10.1016/J.AB.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  44. Bagheri S, Yasemi M, Safaie-Qamsari E, et al (2018) Using gold nanoparticles in diagnosis and treatment of melanoma cancer. 46:462–471. https://doi.org/10.1080/21691401.2018.1430585

  45. Smilowitz HM, Meyers A, Rahman K et al (2018) Intravenously-injected gold nanoparticles (AuNPs) access intracerebral F98 rat gliomas better than AuNPs infused directly into the tumor site by convection enhanced delivery. Int J Nanomed 13:3937–3948. https://doi.org/10.2147/IJN.S154555

    Article  CAS  Google Scholar 

  46. Zhao L, Li Y, Zhu J et al (2019) Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. J Nanobiotechnol 17:1–13. https://doi.org/10.1186/S12951-019-0462-6/FIGURES/7

    Article  Google Scholar 

  47. McHugh KJ, Jing L, Behrens AM et al (2018) Biocompatible semiconductor quantum dots as cancer imaging agents. Adv Mater 30:1706356. https://doi.org/10.1002/ADMA.201706356

    Article  Google Scholar 

  48. Huang N, Cheng S, Zhang X et al (2017) Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood–brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedicine 13:83–93. https://doi.org/10.1016/J.NANO.2016.08.029

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, Mu Q, Wang K et al (2019) Nitrogen and boron dual-doped graphene quantum dots for near-infrared second window imaging and photothermal therapy. Appl Mater Today 14:108–117. https://doi.org/10.1016/J.APMT.2018.11.011

    Article  PubMed  Google Scholar 

  50. Liu Y, Liu J, Chen D et al (2020) Fluorination enhances NIR-II fluorescence of polymer dots for quantitative brain tumor imaging. AngewandteChemie Int Ed 59:21049–21057. https://doi.org/10.1002/ANIE.202007886

    Article  CAS  Google Scholar 

  51. Suárez-García S, Arias-Ramos N, Frias C et al (2018) Dual T1/ T2 nanoscale coordination polymers as novel contrast agents for MRI: a preclinical study for brain tumor. ACS Appl Mater Interfaces 10:38819–38832. https://doi.org/10.1021/ACSAMI.8B15594/SUPPL_FILE/AM8B15594_SI_001.PDF

    Article  PubMed  Google Scholar 

  52. Huang X, Deng G, Liao L et al (2017) CuCo2S4 nanocrystals: a new platform for multimodal imaging guided photothermal therapy. Nanoscale 9:2626–2632. https://doi.org/10.1039/C6NR09028A

    Article  CAS  PubMed  Google Scholar 

  53. Ho YN, Shu LJ, Yang YL (2017) Imaging mass spectrometry for metabolites: technical progress, multimodal imaging, and biological interactions. Wiley Interdiscip Rev SystBiol Med 9:e1387. https://doi.org/10.1002/WSBM.1387

    Article  Google Scholar 

  54. Hallal S, Ebrahimkhani S, Shivalingam B et al (2019) The emerging clinical potential of circulating extracellular vesicles for non-invasive glioma diagnosis and disease monitoring. Brain Tumor Pathol 36:2. https://doi.org/10.1007/S10014-019-00335-0 (36:29–39)

    Article  Google Scholar 

  55. Wang H, Jiang D, Li W et al (2019) Evaluation of serum extracellular vesicles as noninvasive diagnostic markers of glioma. Theranostics 9:5347–5358. https://doi.org/10.7150/THNO.33114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rufino-Ramos D, Albuquerque PR, Carmona V et al (2017) Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J Control Release 262:247–258. https://doi.org/10.1016/J.JCONREL.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  57. Vaneckova M, Herman M, Smith M et al (2015) Gadobenatedimeglumine (MultiHance) or gadoteratemeglumine (Dotarem) for brain tumour imaging? An intra-individual comparison. Cancer Imaging 15:P15. https://doi.org/10.1186/1470-7330-15-S1-P15

    Article  PubMed Central  Google Scholar 

  58. Fan Z, Fu PP, Yu H, Ray PC (2014) Theranostic nanomedicine for cancer detection and treatment. J Food Drug Anal 22:3–17. https://doi.org/10.1016/J.JFDA.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Norden AD, Drappatz J, Wen PY (2008) Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurol 7:1152–1160. https://doi.org/10.1016/S1474-4422(08)70260-6

    Article  CAS  PubMed  Google Scholar 

  60. Alle M, reddyKim GBTH et al (2020) Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: microwave synthesis, characterization, and anti-cancer activity. CarbohydrPolym 229:115511. https://doi.org/10.1016/J.CARBPOL.2019.115511

    Article  CAS  Google Scholar 

  61. Ruan S, Xiao W, Hu C et al (2017) Ligand-mediated and enzyme-directed precise targeting and retention for the enhanced treatment of glioblastoma. ACS Appl Mater Interfaces 9:20348–20360. https://doi.org/10.1021/ACSAMI.7B02303/SUPPL_FILE/AM7B02303_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  62. Ruan S, He Q, Gao H (2015) Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale 7:9487–9496. https://doi.org/10.1039/C5NR01408E

    Article  CAS  PubMed  Google Scholar 

  63. Ruan S, Yuan M, Zhang L et al (2015) Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 37:425–435. https://doi.org/10.1016/J.BIOMATERIALS.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  64. le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 10:339–354. https://doi.org/10.1016/J.NANTOD.2015.04.002

    Article  Google Scholar 

  65. Dayem AA, Hossain MK, Lee S, bin et al (2017) The role of reactive oxygen species (ros) in the biological activities of metallic nanoparticles. Int J Mol Sci 18:120. https://doi.org/10.3390/IJMS18010120

    Article  Google Scholar 

  66. Salazar-García S, García-Rodrigo JF, Martínez-Castañón GA et al (2020) Silver nanoparticles (AgNPs) and zinc chloride (ZnCl2) exposure order determines the toxicity in C6 rat glioma cells. J Nanopart Res 22:1–13. https://doi.org/10.1007/S11051-020-04984-7/FIGURES/8

    Article  Google Scholar 

  67. Locatelli E, Naddaka M, Uboldi C et al (2014) Targeted delivery of silver nanoparticles and alisertib: In vitro and in vivo synergistic effect against glioblastoma. Nanomedicine 9:839–849. https://doi.org/10.2217/NNM.14.1/SUPPL_FILE/SUPPL_MATERIAL.DOCX

    Article  CAS  PubMed  Google Scholar 

  68. Jin T, Sun D, Su JY et al (2009) Antimicrobial efficacy of zinc oxide quantum dots against listeria monocytogenes, salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46–M52. https://doi.org/10.1111/J.1750-3841.2008.01013.X

    Article  CAS  PubMed  Google Scholar 

  69. Jin BJ, Bae SH, Lee SY, Im S (2000) Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition. Mater Sci Eng, B 71:301–305. https://doi.org/10.1016/S0921-5107(99)00395-5

    Article  Google Scholar 

  70. Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C (2009) Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res 2:11. https://doi.org/10.1007/S12274-009-9089-5 (2:882–890)

    Article  Google Scholar 

  71. Shim KH, Hulme J, Maeng EH et al (2014) Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate. Int J Nanomed 9(Suppl 2):217–224. https://doi.org/10.2147/IJN.S58204

    Article  CAS  Google Scholar 

  72. Sharma AK, Singh V, Gera R et al (2017) Zinc oxide nanoparticle induces microglial death by NADPH-oxidase-independent reactive oxygen species as well as energy depletion. Mol Neurobiol 54:6273–6286. https://doi.org/10.1007/S12035-016-0133-7/FIGURES/13

    Article  CAS  PubMed  Google Scholar 

  73. Wahab R, Kaushik NK, Verma AK et al (2011) Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells. J Biol Inorg Chem 16:431–442. https://doi.org/10.1007/S00775-010-0740-0/FIGURES/7

    Article  CAS  PubMed  Google Scholar 

  74. Attia H, Nounou H, Shalaby M (2018) Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics 6:29. https://doi.org/10.3390/TOXICS6020029

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chamberlain MC (2012) Neurotoxicity of intra-CSF liposomal cytarabine (DepoCyt) administered for the treatment of leptomeningeal metastases: a retrospective case series. J Neurooncol 109:143–148. https://doi.org/10.1007/s11060-012-0880-x

    Article  CAS  PubMed  Google Scholar 

  76. Domínguez AR, Hidalgo DO, Garrido RV, Sánchez ET (2005) Liposomal cytarabine (DepoCyte®) for the treatment of neoplastic meningitis. Clin Transl Oncol 7:232–238. https://doi.org/10.1007/BF02710168

    Article  Google Scholar 

  77. Gaillard PJ, Appeldoorn CCM, Dorland R et al (2014) Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS ONE 9:e82331. https://doi.org/10.1371/journal.pone.0082331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rafiyath SM, Rasul M, Lee B et al (2012) Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol 1:10. https://doi.org/10.1186/2162-3619-1-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Neil S, Nemunaitis J, Nunan R et al (2012) 51. Results of a phase I trial of SGT-53: a systemically administered, tumor-targeting immunoliposome nanocomplex incorporating a plasmid encoding wtp53. Mol Ther 20:S21. https://doi.org/10.1016/S1525-0016(16)35855-5

    Article  Google Scholar 

  80. Kim S-S, Harford JB, Moghe M et al (2018) Combination with SGT-53 overcomes tumor resistance to a checkpoint inhibitor. Oncoimmunology 7:e1484982. https://doi.org/10.1080/2162402X.2018.1484982

    Article  PubMed  PubMed Central  Google Scholar 

  81. Banerjee K, Núñez FJ, Haase S et al (2021) Current approaches for glioma gene therapy and virotherapy. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2021.621831

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bort G, Lux F, Dufort S et al (2020) EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: from animal to human with theranosticAGuIX nanoparticles. Theranostics 10:1319–1331. https://doi.org/10.7150/thno.37543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dawidczyk CM, Russell LM, Searson PC (2014) Nanomedicines for cancer therapy: State-of-the-art and limitations to pre-clinical studies that hinder future developments. Front Chem 2:69. https://doi.org/10.3389/FCHEM.2014.00069/ABSTRACT

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ediriwickrema A, Saltzman WM (2015) Nanotherapy for cancer: targeting and multifunctionality in the future of cancer therapies. ACS Biomater Sci Eng 1:64–78. https://doi.org/10.1021/ab500084g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:12. https://doi.org/10.1038/nnano.2007.387 (2:751–760)

    Article  CAS  Google Scholar 

  86. Bray N (2015) Biologics: Transferrin’ bispecific antibodies across the blood-brain barrier. Nat Rev Drug Discov 14:14. https://doi.org/10.1038/NRD4522

    Article  CAS  PubMed  Google Scholar 

  87. Alibolandi M, Ramezani M, Abnous K et al (2015) In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer. J Control Release 209:88–100. https://doi.org/10.1016/J.JCONREL.2015.04.026

    Article  CAS  PubMed  Google Scholar 

  88. Yang Z, Tang W, Luo X et al (2015) Dual-ligand modified polymer-lipid hybrid nanoparticles for docetaxel targeting delivery to Her2/neu overexpressed human breast cancer cells. J Biomed Nanotechnol 11:1401–1417. https://doi.org/10.1166/jbn.2015.2086

    Article  CAS  PubMed  Google Scholar 

  89. Shan L, Liu M, Wu C et al (2015) Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy. Int J Nanomed 10:5571–5591. https://doi.org/10.2147/IJN.S85402

    Article  CAS  Google Scholar 

  90. Wu Q, Zheng H, Gu J et al (2022) Detection of folate receptor-positive circulating tumor cells as a biomarker for diagnosis, prognostication, and therapeutic monitoring in breast cancer. J Clin Lab Anal 36:e24180. https://doi.org/10.1002/JCLA.24180

    Article  CAS  PubMed  Google Scholar 

  91. Pan X, Lee RJ (2005) Tumour-selective drug delivery via folate receptor-targeted liposomes. 1:7–17. https://doi.org/10.1517/17425247.1.1.7

  92. Ruan S, Qin L, Xiao W et al (2018) Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood-brain barrier transcytosis and programmed glioma targeting delivery. Adv Funct Mater 28:1802227. https://doi.org/10.1002/ADFM.201802227

    Article  Google Scholar 

  93. Guo L, Zhang H, Wang F et al (2015) Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system. Int J Nanomed 10:4535–4547. https://doi.org/10.2147/IJN.S85587

    Article  CAS  Google Scholar 

  94. Nsairat H, Khater D, Odeh F et al (2021) Lipid nanostructures for targeting brain cancer. Heliyon 7:e07994. https://doi.org/10.1016/j.heliyon.2021.e07994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sapkota R, Dash AK (2021) Liposomes and transferosomes: a breakthrough in topical and transdermal delivery. Ther Deliv 12:145–158. https://doi.org/10.4155/tde-2020-0122

    Article  CAS  PubMed  Google Scholar 

  96. Miura Y, Takenaka T, Toh K et al (2013) Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS nano 7(10):8583–92

  97. Ruan S, Xie R, Qin L et al (2019) Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition combined with anti-PD-l1 antibody for improved glioma treatment. Nano Lett 19:8318–8332. https://doi.org/10.1021/ACS.NANOLETT.9B03968/SUPPL_FILE/NL9B03968_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  98. Kesharwani P, Iyer AK (2015) Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 20:536–547

    Article  CAS  PubMed  Google Scholar 

  99. Zhou Y, Peng Z, Seven ES, Leblanc RM (2018) Crossing the blood-brain barrier with nanoparticles. J Control Release 270:290–303. https://doi.org/10.1016/J.JCONREL.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  100. Weerathunge P, Pooja D, Singh M et al (2019) Transferrin-conjugated quasi-cubic SPIONs for cellular receptor profiling and detection of brain cancer. Sens Actuators B Chem 297:126737. https://doi.org/10.1016/J.SNB.2019.126737

    Article  CAS  Google Scholar 

  101. Alphandéry E, Idbaih A, Adam C et al (2017) Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. J Control Release 262:259–272. https://doi.org/10.1016/J.JCONREL.2017.07.020

    Article  PubMed  Google Scholar 

  102. Patra S, Mukherjee S, Barui AK et al (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng, C 53:298–309. https://doi.org/10.1016/J.MSEC.2015.04.048

    Article  CAS  Google Scholar 

  103. Aldape K, Brindle KM, Chesler L et al (2019) Challenges to curing primary brain tumours. Nat Rev Clin Oncol 16:8. https://doi.org/10.1038/s41571-019-0177-5 (16:509–520)

    Article  CAS  Google Scholar 

  104. de Campos Vieira Abib S, Chui CH, Cox S et al (2022) International Society of Paediatric Surgical Oncology (IPSO) Surgical Practice Guidelines. Ecancermedicalscience. https://doi.org/10.3332/ECANCER.2022.1356

    Article  PubMed  PubMed Central  Google Scholar 

  105. Senapati S, Kumar Mahanta A, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-017-0004-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RA: Concept and writing-Original draft and revisions; LK: Concept, writing-original draft and revisions; LM: Concept and writing-Original draft and revisions; and NB- Supervision and concept, and editing.

Corresponding author

Correspondence to Navneeta Bharadvaja.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. There is no any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, R., Kumar, L., Mohan, L. et al. Nano-inspired smart medicines targeting brain cancer: diagnosis and treatment. J Biol Inorg Chem 28, 1–15 (2023). https://doi.org/10.1007/s00775-022-01981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01981-0

Keywords

Navigation