Skip to main content

Advertisement

Log in

Exploring the in vitro anticancer activities of Re(I) picolinic acid and its fluorinated complex derivatives on lung cancer cells: a structural study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Fifteen rhenium(I) tricarbonyl complexes of the form fac-[Re(N,O’)(CO)3(X)], where N,O’-bidentate ligand = 2-picolinic acid (Pico); 3,5-difluoropyridine-2-carboxylic acid (Dfpc); 3-trifluoromethyl-pyridine-2-carboxylic acid (Tfpc) and X = H2O; pyrazole (Pz); pyridine (Py); imidazole (Im); and methanol (CH3OH) were synthesized using the ‘2 + 1’ mixed ligand approach with an average yield of 84%. The complexes were characterized using the following spectroscopic techniques: IR, 1H and 13C NMR, UV/Vis, and single-crystal X-ray diffraction. The effect of the fluorine atoms on the backbone of the N,O’-bidentate ligand was investigated and a trend was noticed in the carbonyl stretching frequencies: with Pico < Tfpc < Dfpc. The in vitro biological screening on Vero (healthy mammalian), HeLa (cervical carcinoma) and A549 (lung cancer) cells revealed one toxic complex, fac-[Re(Pico)(CO)3(H2O)], with respective LC50 values of 9.0 ± 0.9, 15.8 ± 4.9 (SI = 0.570) and 20.9 ± 0.8 (SI = 0.430) μg/mL. As a result, it can be used as a positive control drug of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The in vitro biological datasets generated during and/or analysed during this study are available from the corresponding author on reasonable request.

References

  1. DeVita VT Jr, Rosenberg SA (2012) Two hundred years of cancer research. New Eng J Med 366:2207–2214

    Article  CAS  PubMed  Google Scholar 

  2. Di Lonardo A, Nasi S, Pulciani S (2015) Cancer: we should not forget the past. J Can 6:29–39

    Article  Google Scholar 

  3. Hajdu SI (2011) A note from history: landmarks in history of cancer, part 1. Cancer 117:1097–1102

    Article  PubMed  Google Scholar 

  4. Mitrus I, Bryndza E, Sochanik A, Szala S (2012) Evolving models of tumor origin and progression. Tumour Biol J. Int. Soc. Onco. Biol. & Med. 33:911–917

    Article  CAS  Google Scholar 

  5. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharm 740:364–378

    Article  CAS  Google Scholar 

  6. Mcquitty RJ (2014) Metal-based drugs. Sci Prog 97:1–19

    Article  CAS  PubMed  Google Scholar 

  7. Ip M, Lui SL, Poon VKM, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Micro 55:59–63

    Article  CAS  Google Scholar 

  8. Thomas S, McCubbin P (2003) A comparison of the antimicrobial effects of four silver-containing dressings on three organisms. J Wound Care 12:101–107

    Article  CAS  PubMed  Google Scholar 

  9. Guo Z, Sadler PJ (1999) Metals in medicine. Ang. Chem. (Int. ed. in Eng) 38:1512–1531

    Article  CAS  Google Scholar 

  10. Arnold WP, Longnecker DE, Epstein RM (1984) Photodegradation of sodium nitroprusside: biologic activity and cyanide release. Anesthesiology 61:254–260

    Article  CAS  PubMed  Google Scholar 

  11. Yan G-P, Robinson L, Hogg P (2007) Magnetic resonance imaging contrast agents: Overview and perspectives. Radiography 13:e5–e19

    Article  Google Scholar 

  12. Hartmann JT, Lipp HP (2003) Toxicity of platinum compounds. Exp Op Pharma 4:889–901

    Article  CAS  Google Scholar 

  13. King AP, Marker SC, Swanda RV, Woods JJ, Qian S-B, Wilson JJ (2019) A rhenium isonitrile complex induces unfolded protein response-mediated apoptosis in cancer cells. Chem. A Eur. J. 25:9206–9210

    Article  CAS  Google Scholar 

  14. Marker SC, King AP, Granja S, Vaughn B, Woods JJ, Boros E, Wilson JJ (2020) Exploring the in vivo and in vitro anticancer activity of rhenium isonitrile complexes. Inorg Chem 59:10285–10303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Delasoie J, Pavic A, Voutier N, Vojnovic S, Crochet A, Nikodinovic-Runic J, Zobi F (2020) Identification of novel potent and non-toxic anticancer, anti-angiogenic and antimetastatic rhenium complexes against colorectal carcinoma. Eur J Med Chem 204:112583

    Article  CAS  PubMed  Google Scholar 

  16. Liew HS, Mai CW, Zulkefeli M, Madheswaran T, Kiew LV, Delsuc N, Low ML (2020) Recent Emergence of Rhenium(I) Tricarbonyl Complexes as Photosensitisers for Cancer Therapy. Molecules 25:4179–4199

    Article  Google Scholar 

  17. Mkhatshwa M, Moremi JM, Makgopa K, Manicum AE (2021) Nanoparticles functionalised with Re(I) tricarbonyl complexes for cancer theranostics. Int J Mol Sci 22:6546–6563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Capper MS, Enriquez Garcia A, Macia N, Lai B, Lin JB, Nomura M, Alihosseinzadeh A, Ponnurangam S, Heyne B, Shemanko CS, Jalilehvand F (2020) Cytotoxicity, cellular localization and photophysical properties of Re(I) tricarbonyl complexes bound to cysteine and its derivatives. J Biol Inorg Chem 25:759–776

    Article  CAS  PubMed  Google Scholar 

  19. Ranasinghe K, Handunnetti S, Perera IC, Perera T (2016) Synthesis and characterization of novel rhenium(I) complexes towards potential biological imaging applications. Chem Cent J 10:71–81

    Article  PubMed  PubMed Central  Google Scholar 

  20. Darshani T, Fronczek FR, Priyadarshani VV, Samarakoon SR, Perera IC, Perera T (2020) Synthesis and characterization of novel naphthalene-derivatized tridentate ligands and their net neutral rhenium tricarbonyl complexes and cytotoxic effects on non-small cell lung cancer cells of interest. Polyhedron 187:114652–114667

    Article  CAS  Google Scholar 

  21. Knopf KM, Murphy BL, MacMillan SN, Baskin JM, Barr MP, Boros E, Wilson JJ (2017) In vitro anticancer activity and in vivo biodistribution of rhenium(I) tricarbonyl aqua complexes. J Am Chem Soc 139:14302–14314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murphy BL, Marker SC, Lambert VJ, Woods JJ, MacMillan SN, Wilson JJ (2020) Synthesis, characterization, and biological properties of rhenium(I) tricarbonyl complexes bearing nitrogen-donor ligands. J Org Chem 907:121064–121084

    Article  CAS  Google Scholar 

  23. Stout MJ, Skelton BW, Sobolev AN, Raiteri P, Massi M, Simpson PV (2020) Synthesis and photochemical properties of Re(I) tricarbonyl complexes bound to thione and thiazol-2-ylidene ligands. Organometallics 39:3202–3211

    Article  CAS  Google Scholar 

  24. Paparidis G, Akrivou M, Tsachouridou V, Shegani A, Vizirianakis IS, Pirmettis I, Papadopoulos MS, Papagiannopoulou D (2018) Synthesis and evaluation of 99mTc/Re-tricarbonyl complexes of the triphenylphosphonium cation for mitochondrial targeting. Nucl Med Biol 57:34–41

    Article  CAS  PubMed  Google Scholar 

  25. Sovari SN, Golding TM, Mbaba M, Mohunlal R, Egan TJ, Smith GS, Zobi F (2022) Rhenium(I) derivatives of aminoquinoline and imidazolopiperidine-based ligands: synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Bio 234:111905–111915

    Article  CAS  Google Scholar 

  26. Collery P, Mohsen A, Kermagoret A, Corre S, Bastian G, Tomas A, Wei M, Santoni F, Guerra N, Desmaële D, d’Angelo J (2015) Antitumor activity of a rhenium (I)-diselenoether complex in experimental models of human breast cancer. Invest New Drugs 33:848–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Veena V, Harikrishnan A, Lakshmi B, Khanna S, Desmaele D, Collery P (2020) A New model applied for evaluating a rhenium-diselenium drug: breast cancer cells stimulated by cytokines induced from polynuclear cells by LPS. Anticancer Res 40:1915–1920

    Article  CAS  PubMed  Google Scholar 

  28. Domenichini A, Casari I, Simpson PV, Desai NM, Chen L, Dustin C, Edmands JS, van der Vliet A, Mohammadi M, Massi M, Falasca M (2020) Rhenium N-heterocyclic carbene complexes block growth of aggressive cancers by inhibiting FGFR- and SRC-mediated signalling. J. Exp. Clin. Cancer Res. CR 39:276–293

    Article  CAS  PubMed  Google Scholar 

  29. Artem’ev AV, Petyuk MY, Berezin AS, Gushchin AL, Sokolov MN, Bagryanskaya IY (2021) Synthesis and study of Re(I) tricarbonyl complexes based on octachloro-1,10-phenanthroline: towards deep red-to-NIR emitters. Polyhedron 209:115484–115499

    Article  CAS  Google Scholar 

  30. Zhong F, Yuan X, Zhao J, Wang Q (2016) Visible light-harvesting tricarbonyl Re(I) complex: synthesis and application in intracellular photodynamic effect and luminescence imaging. Sci China Chem 59:70–77

    Article  CAS  Google Scholar 

  31. Lo KK-W, Tsang KH-K, Zhu N (2006) Luminescent tricarbonylrhenium(I) polypyridine estradiol conjugates: synthesis, crystal structure, and photophysical, electrochemical, and protein-binding properties. Organometallics 25:3220–3227

    Article  CAS  Google Scholar 

  32. Leonidova A, Pierroz V, Rubbiani R, Heier J, Ferrari S, Gasser G (2014) Towards cancer cell-specific phototoxic organometallic rhenium(I) complexes. Dalt Trans 43:4287–4294

    Article  CAS  Google Scholar 

  33. Leonidova A, Pierroz V, Rubbiani R, Lan Y, Schmitz AG, Kaech A, Sigel RKO, Ferrari S, Gasser G (2014) Photo-induced uncaging of a specific Re(I) organometallic complex in living cells. Chem Sci 5:4044–4056

    Article  CAS  Google Scholar 

  34. Striplin DR, Crosby GA (2001) Photophysical investigations of rhenium(I)Cl(CO)3(phenanthroline) complexes. Coord Chem Rev 211:163–175

    Article  CAS  Google Scholar 

  35. Ramos LD, de Macedo LH, Gobo NRS, de Oliveira KT, Cerchiaro G, Morelli Frin KP (2020) Understanding the photophysical properties of rhenium(I) compounds coordinated to 4,7-diamine-1,10-phenanthroline: synthetic, luminescence and biological studies. Dalt Trans 49:16154–16165

    Article  CAS  Google Scholar 

  36. Manicum A-L, Alexander O, Schutte-Smith M, Visser HG (2020) Synthesis, characterization and substitution reactions of fac-[Re(O, O′-bid)(CO)3(P)] complexes, using the “2+1” mixed ligand model. J Mol Str 1209:127953–127964

    Article  CAS  Google Scholar 

  37. Manicum A-LE, Schutte-Smith M, Alexander OT, Twigge L, Roodt A, Visser HG (2019) First kinetic data of the CO substitution in fac-[Re(L, L′-Bid)(CO)3(X)] complexes (L, L′-Bid = acacetylacetonate or tropolonate) by tertiary phosphines PTA and PPh3: Synthesis and crystal structures of water-soluble rhenium(I) tri- and dicarbonyl complexes with 1,3,5-triaza-7-phosphaadamantane (PTA). Inorg Chem Comm 101:93–98

    Article  CAS  Google Scholar 

  38. Manicum A-LE, Schutte-Smith M, Visser HG (2018) The synthesis and structural comparison of fac-[Re(CO)3]+ containing complexes with altered β-diketone and phosphine ligands. Polyhedron 145:80–87

    Article  CAS  Google Scholar 

  39. Manicum A, Schutte-Smith M, Kemp G, Visser HG (2015) Illustration of the electronic influence of coordinated β-diketone type ligands: a kinetic and structural study. Polyhedron 85:190–195

    Article  CAS  Google Scholar 

  40. Gantsho VL, Dotou M, Jakubaszek M, Goud B, Gasser G, Visser HG, Schutte-Smith M (2020) Synthesis, characterization, kinetic investigation and biological evaluation of Re(I) di- and tricarbonyl complexes with tertiary phosphine ligands. Dalt Trans 49:35–46

    Article  CAS  Google Scholar 

  41. Priyatharsini M, Mishra I, Shankar B, Srinivasan N, Krishnakumar RV, Sathiyendiran M (2021) fac-Re(CO)3 core-based complex featuring benzimidazole as pendant motif from hydroxyquinoline and pyridylbenzimidazole. J Org Chem 953:122052–122062

    Article  CAS  Google Scholar 

  42. Manicum A-LE, Schutte-Smith M, Malan FP, Visser HG (2022) Steric and electronic influence of Re(I) tricarbonyl complexes with various coordinated β-diketones. J Mol Str 1264:133278–133290

    Article  CAS  Google Scholar 

  43. Manicum A-L, Schutte-Smith M, Visser HG, Pretorius C, Roodt A (2016) Crystal structure of tetraethylammonium fac-tricarbonyl(hexafluoroacetylacetonato-κ2O, O′)-(nitrato-κO)rhenium(I), C16H21O8N2F6Re. Zeits. für Krist. New Cryst. Str. 231:263–266

    CAS  Google Scholar 

  44. Lo KK-W, Louie M-W, Sze K-S, Lau JS-Y (2008) Rhenium(I) polypyridine biotin isothiocyanate complexes as the first luminescent biotinylation reagents: synthesis, photophysical properties, biological labeling, cytotoxicity, and imaging studies. Inorg Chem 47:602–611

    Article  CAS  PubMed  Google Scholar 

  45. Leonidova A, Gasser G (2014) Underestimated potential of organometallic rhenium complexes as anticancer agents. ACS Chem Biol 9:2180–2193

    Article  CAS  PubMed  Google Scholar 

  46. Mansour AM (2021) Tricarbonyl triazolato Re(I) compounds of pyridylbenzimidazole ligands: spectroscopic and antimicrobial activity evaluation. RSC Adv 11:22715–22722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schindler K, Zobi F (2022) Anticancer and antibiotic rhenium tri- and dicarbonyl complexes: current research and future perspectives. Molecules 27:539–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mehler AH (1956) Formation of picolinic and quinolinic acids following enzymatic oxidation of 3-hydroxyanthranilic acid. J Biol Chem 218:241–254

    Article  CAS  PubMed  Google Scholar 

  49. Dazzi C, Candiano G, Massazza S, Ponzetto A, Varesio L (2001) New high-performance liquid chromatographic method for the detection of picolinic acid in biological fluids. J. Chrom. B Biol. Sci. App. 751:61–68

    Article  CAS  Google Scholar 

  50. Rebello T, Lönnerdal B, Hurley LS (1982) Picolinic acid in milk, pancreatic juice, and intestine: inadequate for role in zinc absorption. Am J Clin Nutr 35:1–5

    Article  CAS  PubMed  Google Scholar 

  51. Peters JC (1991) Tryptophan nutrition and metabolism: an overview. Adv Exp Med & Biol 294:345–358

    Article  CAS  Google Scholar 

  52. Fernandez-Pol JA, Johnson GS (1977) Selective toxicity induced by picolinic acid in simian virus 40-transformed cells in tissue culture. Can Res 37:4276–4279

    CAS  Google Scholar 

  53. Fernandez-Pol JA, Klos DJ, Hamilton PD (2001) Antiviral, cytotoxic and apoptotic activities of picolinic acid on human immunodeficiency virus-1 and human herpes simplex virus-2 infected cells. Anticancer Res 21:3773–3776

    CAS  PubMed  Google Scholar 

  54. Alberto RA, Schibli R, Schubiger PA, Abram U, Kaden T (1996) Reactions with the technetium and rhenium carbonyl complexes (NEt4)2[MX3(CO)3]. Synthesis and structure of [Tc(CN-But)3(CO)3](NO3) and (NEt4)[Tc2(μ-SCH2CH2OH)3(CO)6]. Polyhedron 15:1079–1089

    Article  CAS  Google Scholar 

  55. Alberto, R.; Egli, A.; Abram, U.; Hegetschweiler, K.; Gramlich, V.; Schubiger, P. A., Synthesis and reactivity of [NEt4]2[ReBr3(CO)3]. Formation and structural characterization of the clusters [NEt4][Re33-OH)(µ-OH)3(CO)9] and [NEt4][Re2(µ-OH)3(CO)6] by alkaline titration. J. Chem. Soc., Dalt. Trans. 1994, 2815–2820.

  56. Schibli R, La Bella R, Alberto R, Garcia-Garayoa E, Ortner K, Abram U, Schubiger PA (2000) Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)−tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bio Chem 11:345–351

    CAS  Google Scholar 

  57. Rigaku O (2018) CrysAlis PRO Soft. Syst, Rigaku Corporation, Oxford

    Google Scholar 

  58. Sheldrick G (2015) SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst Sect A 71:3–8

    Article  Google Scholar 

  59. Mundwiler, S.; Kündig, M.; Ortner, K.; Alberto, R., A new [2 + 1] mixed ligand concept based on [99(m)Tc(OH2)3(CO)3]+: a basic study. Dalt. Trans. 2004, 1320–1328.

  60. Li D, Zhong G-Q (2014) Synthesis, crystal structure, and thermal decomposition of the cobalt(II) complex with 2-picolinic acid. Sci W J 2014:641608–641615

    Google Scholar 

  61. Manicum A-L, Alexander O, Schutte-Smith M, Visser HG, Roodt A (2017) Crystal structure of fac-(acetylacetonato-κ2O, O′)tricarbonyl(benzyldiphenylphosphine-κP)rhenium(I), C27H24O5PRe. Zeits. für Krist. New Cryst. Str. 232:957–959

    CAS  Google Scholar 

  62. Aleksanyan DV, Churusova SG, Rybalkina EY, Artyushin OI, Peregudov AS, Nelyubina YV, Klemenkova ZS, Bykhovskaya OV, Kozlov VA (2019) Tricarbonylrhenium(I) complexes with heterodentate ligands based on functionalized amides: synthesis, structural features, and cytotoxic activity. J Org Chem 892:66–74

    Article  CAS  Google Scholar 

  63. Sovari SN, Vojnovic S, Bogojevic SS, Crochet A, Pavic A, Nikodinovic-Runic J, Zobi F (2020) Design, synthesis and in vivo evaluation of 3-arylcoumarin derivatives of rhenium(I) tricarbonyl complexes as potent antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 205:112533

    Article  CAS  PubMed  Google Scholar 

  64. Hayes TR, Lyon PA, Barnes CL, Trabue S, Benny PD (2015) Influence of functionalized pyridine ligands on the radio/chemical behavior of [MI(CO)3]+ (M = Re and 99mTc) 2 + 1 complexes. Inorg Chem 54:1528–1534

    Article  CAS  PubMed  Google Scholar 

  65. Brink A, Visser HG, Roodt A (2013) Activation of Rhenium(I) toward substitution in fac-[Re(N, O′-Bid)(CO)3(HOCH3)] by Schiff-Base bidentate ligands (N, O′-Bid). Inorg Chem 52:8950–8961

    Article  CAS  PubMed  Google Scholar 

  66. Czerwieniec, R.; Kapturkiewicz, A.; Anulewicz-Ostrowska, R.; Nowacki, J., ReI(CO)3+ complexes with N∩O− bidentate ligands. J. Chem. Soc., Dalt. Trans. 2002, 3434–3441.

  67. Faller JW, Mason G, Parr J (2001) The synthesis of new complexes of rhenium(I) with heterotridentate [P, N, O] ligands. J Org Chem 626:181–185

    Article  CAS  Google Scholar 

  68. Roodt A, Visser HG, Brink A (2011) Structure/reactivity relationships and mechanism from X-ray data and spectroscopic kinetic analysis. Cryst Rev 17:241–280

    Article  CAS  Google Scholar 

  69. Booysen IN, Ebonumoliseh I, Akerman MP, Xulu B (2015) A rhenium(I) compound bearing a dimerized chromone NO bidentate chelator. Inorg Chem Comm 62:8–10

    Article  CAS  Google Scholar 

  70. Schutte-Smith M, Visser HG (2015) The versatility of pyridine-2,5-dicarboxylic acid in the synthesis of fac-M(CO)3 complexes (M=Re, 99mTc): reactivity towards substitution reactions and derivatization after coordination to a metal. Polyhedron 89:122–128

    Article  CAS  Google Scholar 

  71. Triantis C, Shegani A, Kiritsis C, Ischyropoulou M, Roupa I, Psycharis V, Raptopoulou C, Kyprianidou P, Pelecanou M, Pirmettis I, Papadopoulos MS (2018) Dicarbonyl cis-[M(CO)2(N, O)(C)(P)] (M = Re, (99m)Tc) Complexes with a New [2 + 1 + 1] Donor Atom Combination. Inorg Chem 57:8354–8363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Research Foundation South Africa (Grant No. 129468), Tshwane University of Technology and the University of Pretoria for institutional and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda-Lee E. Manicum.

Ethics declarations

Conflict of interest

There is no conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 20460 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matlou, M.L., Malan, F.P., Nkadimeng, S. et al. Exploring the in vitro anticancer activities of Re(I) picolinic acid and its fluorinated complex derivatives on lung cancer cells: a structural study. J Biol Inorg Chem 28, 29–41 (2023). https://doi.org/10.1007/s00775-022-01971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01971-2

Keywords

Navigation