Skip to main content
Log in

Flavin-mediated reductive iron mobilization from frog M and Mycobacterial ferritins: impact of their size, charge and reactivities with NADH/O2

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In vitro, reductive mobilization of ferritin iron using suitable electron transfer mediators has emerged as a possible mechanism to mimic the iron release process, in vivo. Nature uses flavins as electron relay molecules for important biological oxidation and oxygenation reactions. Therefore, the current work utilizes three flavin analogues: riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which differ in size and charge but have similar redox potentials, to relay electron from nicotinamide adenine dinucleotide (NADH) to ferritin mineral core. Of these, the smallest/neutral analogue, RF, released more iron (~ three fold) in comparison to the larger and negatively charged FMN and FAD. Although iron mobilization got marred during the initial stages under aerobic conditions, but increased with a greater slope at the later stages of the reaction kinetics, which gets inhibited by superoxide dismutase, consistent with the generation of O2 in situ. The initial step, i.e., interaction of flavins with NADH played critical role in the iron release process. Overall, the flavin-mediated reductive iron mobilization from ferritins occurred via two competitive pathways, involving the reduced form of flavins either alone (anaerobic condition) or in combination with O2 intermediate (aerobic condition). Moreover, faster iron release was observed for ferritins from Mycobacterium tuberculosis than from bullfrog, indicating the importance of protein nanocage and the advantages they provide to the respective organisms. Therefore, these structure–reactivity studies of flavins with NADH/O2 holds significance in ferritin iron release, bioenergetics, O2-based cellular toxicity and may be potentially exploited in the treatment of methemoglobinemia.

Graphic abstract

Smaller sized/neutral flavin analogue, riboflavin (RF) exhibits faster reactivity towards both NADH and O2 generating more amount of O2 and releases higher amount of iron from different ferritins, compared to its larger sized/negatively charged derivatives such as FMN and FAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2

Similar content being viewed by others

Abbreviations

ET:

Electron transfer

LZ:

Lumazine

RF:

Riboflavin

FMN:

Flavin mononucleotide

FAD:

Flavin adenine dinucleotide

Fox :

Ferroxidase center

Mtb :

Mycobacterium tuberculosis

BfrA:

Bacterioferritin A

BfrB:

Bacterioferritin B

Frog M:

Bullfrog ferritin with M subunits

PAGE:

Poly-acrylamide gel electrophoresis

E 1/2 :

Midpoint potential

CV:

Cyclic voltammetry

SWV:

Square wave voltammetry

DPV:

Differential pulsed voltammetry

DMSO:

Dimethyl sulfoxide

MOPS:

3-(N-Morpholino) propane sulfonic acid

NADH:

β-Nicotinamide adenine dinucleotide

ROS:

Reactive oxygen species

Flox :

Oxidized flavin quinone

Flsq :

1 e reduced flavin semi-quinone

Flred :

2 e reduced flavin hydroquinone

Fz:

Ferrozine

Tyr:

Tyrosine

Trp:

Tryptophan

pI:

Isoelectric point

PDB:

Protein data bank

MM-GBSA:

Molecular Mechanics energies combined with the Generalized Born and Surface Area continuum solvation

MD:

Molecular docking

References

  1. Theil EC, Tosha T, Behera RK (2016) Acc Chem Res 49:784–791

    PubMed  CAS  Google Scholar 

  2. Sheftel AD, Mason AB, Ponka P (2012) Biochimica et Biophysica Acta (BBA) General Subjects 1820:161–187

    CAS  Google Scholar 

  3. Crichton R (2009) Iron metabolism. Wiley, New York, pp 17–58

    Google Scholar 

  4. Theil EC, Behera RK, Tosha T (2013) Coord Chem Rev 257:579–586

    PubMed  CAS  Google Scholar 

  5. Bou-Abdallah F (2010) Biochem Biophys Acta 1800:719–731

    PubMed  CAS  Google Scholar 

  6. Mohanty A, Subhadarshanee B, Barman P, Mahapatra C, Aishwarya B, Behera RK (2019) Inorg Chem 58:4741–4752

    PubMed  CAS  Google Scholar 

  7. Parida A, Mohanty A, Kansara BT, Behera RK (2020) Inorg Chem 59:629–641

    PubMed  CAS  Google Scholar 

  8. Theil EC, Behera RK (2013) Coordination chemistry in protein cages. Wiley, New York, pp 3–24

    Google Scholar 

  9. Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR (2015) Chem Rev 115:295–326

    PubMed  CAS  Google Scholar 

  10. Tosha T, Ng H-L, Bhattasali O, Alber T, Theil EC (2010) J Am Chem Soc 132:14562–14569

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Bernacchioni C, Ghini V, Theil EC, Turano P (2016) RSC Adv 6:21219–21227

    CAS  Google Scholar 

  12. Behera RK, Torres R, Tosha T, Bradley JM, Goulding CW, Theil EC (2015) J Biol Inorg Chem 20:957–969

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Behera RK, Theil EC (2014) Proc Natl Acad Sci USA 111:7925–7930

    PubMed  CAS  Google Scholar 

  14. Maity B, Fujita K, Ueno T (2015) Curr Opin Chem Biol 25:88–97

    PubMed  CAS  Google Scholar 

  15. Tosha T, Behera RK, Ng HL, Bhattasali O, Alber T, Theil EC (2012) J Biol Chem 287:13016–13025

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Treffry A, Bauminger ER, Hechel D, Hodson NW, Nowik I, Yewdall SJ, Harrison PM (1993) Biochem J 296(Pt 3):721–728

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Bertini I, Lalli D, Mangani S, Pozzi C, Rosa C, Theil EC, Turano P (2012) J Am Chem Soc 134:6169–6176

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Pozzi C, Pisa F, Lalli D, Rosa C, Theil E, Turano P, Mangani S (2015) Acta Crystallogr Sect D Biol Crystallogr 71:941–953

    CAS  Google Scholar 

  19. Bernacchioni C, Pozzi C, Di Pisa F, Mangani S, Turano P (2016) Chem Eur J 22:16213–16219

    PubMed  CAS  Google Scholar 

  20. Koochana PK, Mohanty A, Das S, Subhadarshanee B, Satpati S, Dixit A, Sabat SC, Behera RK (2018) Biochem Biophys Acta 1862:1190–1198

    CAS  Google Scholar 

  21. Rivera M (2017) Acc Chem Res 50:331–340

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Mehlenbacher M, Poli M, Arosio P, Santambrogio P, Levi S, Chasteen ND, Bou-Abdallah F (2017) Biochemistry 56:3900–3912

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Bradley JM, Moore GR, Le Brun NE (2014) J Biol Inorg Chem 19:775–785

    PubMed  CAS  Google Scholar 

  24. Chasteen ND, Harrison PM (1999) J Struct Biol 126:182–194

    PubMed  CAS  Google Scholar 

  25. Kwak Y, Schwartz JK, Haldar S, Behera RK, Tosha T, Theil EC, Solomon EI (2014) Biochemistry 53:473–482

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Bradley JM, Svistunenko DA, Pullin J, Hill N, Stuart RK, Palenik B, Wilson MT, Hemmings AM, Moore GR, Le Brun NE (2019) Proc Natl Acad Sci 116:2058

    PubMed  CAS  Google Scholar 

  27. Bradley JM, Le Brun NE, Moore GR (2016) J Biol Inorg Chem 21:13–28

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Ceci P, Di Cecca G, Falconi M, Oteri F, Zamparelli C, Chiancone E (2011) J Biol Inorg Chem 16:869–880

    PubMed  CAS  Google Scholar 

  29. Gálvez N, Fernández B, Sánchez P, Cuesta R, Ceolín M, Clemente-León M, Trasobares S, López-Haro M, Calvino JJ, Stéphan O, Domínguez-Vera JM (2008) J Am Chem Soc 130:8062–8068

    PubMed  Google Scholar 

  30. Pandey R, Rodriguez GM (2014) Mol Microbiol 91:98–109

    PubMed  CAS  Google Scholar 

  31. Theil EC (2013) Inorg Chem 52:12223–12233

    PubMed  CAS  Google Scholar 

  32. Khare G, Nangpal P, Tyagi AK (2017) PLoS ONE 12:e0169545

    PubMed  PubMed Central  Google Scholar 

  33. Maity B, Hishikawa Y, Lu D, Ueno T (2019) Polyhedron 172:104–111

    CAS  Google Scholar 

  34. Koochana PK, Mohanty A, Subhadarshanee B, Satpati S, Naskar R, Dixit A, Behera RK (2019) Dalton Trans 48:3314–3326

    PubMed  CAS  Google Scholar 

  35. Melman G, Bou-Abdallah F, Vane E, Maura P, Arosio P, Melman A (2013) Biochimica et Biophysica Acta BBA General Subj 1830:4669–4674

    CAS  Google Scholar 

  36. Badu-Boateng C, Naftalin RJ (2019) Free Radical Biol Med 133:75–87

    CAS  Google Scholar 

  37. Kidane TZ, Sauble E, Linder MC (2006) Am J Physiol Cell Physiol 291:C445-455

    PubMed  CAS  Google Scholar 

  38. Sala D, Ciambellotti S, Giachetti A, Turano P, Rosato A (2017) J Chem Inf Model 57:2112–2118

    PubMed  CAS  Google Scholar 

  39. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Nature 509:105–109

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Gryzik M, Srivastava A, Longhi G, Bertuzzi M, Gianoncelli A, Carmona F, Poli M, Arosio P (2017) Biochem Biophys Acta 1861:2710–2716

    CAS  Google Scholar 

  41. Badu-Boateng C, Naftalin RJ (2018). Free Radical Biol Med. https://doi.org/10.1016/j.freeradbiomed.2018.09.041

    Article  Google Scholar 

  42. Jones T, Spencer R, Walsh C (1978) Biochemistry 17:4011–4017

    PubMed  CAS  Google Scholar 

  43. Yao H, Wang Y, Lovell S, Kumar R, Ruvinsky AM, Battaile KP, Vakser IA, Rivera M (2012) J Am Chem Soc 134:13470–13481

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Eshelman K, Yao H, Punchi Hewage AND, Deay JJ, Chandler JR, Rivera M (2017) Met Integr Biometal Sci 9:646–659

    CAS  Google Scholar 

  45. De Domenico I, Ward DM, Kaplan J (2009) Blood 114:4546–4551

    PubMed  PubMed Central  Google Scholar 

  46. Watt RK, Hilton RJ, Graff DM (2010) Biochimica et Biophysica Acta (BBA) General Subj 1800:745–759

    CAS  Google Scholar 

  47. Bou-Abdallah F, McNally J, Liu XX, Melman A (2011) Chem Commun 47:731–733

    CAS  Google Scholar 

  48. Soldano A, Yao H, Punchi Hewage AND, Meraz K, Annor-Gyamfi JK, Bunce RA, Battaile KP, Lovell S, Rivera M (2020). ACS Infectious Diseases. https://doi.org/10.1021/acsinfecdis.0c00669

    Article  PubMed  PubMed Central  Google Scholar 

  49. Punchi Hewage AND, Yao H, Nammalwar B, Gnanasekaran KK, Lovell S, Bunce RA, Eshelman K, Phaniraj SM, Lee MM, Peterson BR, Battaile KP, Reitz AB, Rivera M (2019) J Am Chem Soc 141:8171–8184

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Massey V (1994) J Biol Chem 269:22459–22462

    PubMed  CAS  Google Scholar 

  51. Buckel W, Thauer RK (2018) Chem Rev 118:3862–3886

    PubMed  CAS  Google Scholar 

  52. Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A (2018) Chem Rev 118:1742–1769

    PubMed  CAS  Google Scholar 

  53. Weber S, Schleicher E (2014) Flavins and flavoproteins: methods and protocols. Springer Science, New York

    Google Scholar 

  54. Banerjee R, Becker DF, Dickman MB, Gladyshev VN, Ragsdale SW (2007) Redox biochemistry. Wiley, New York

    Google Scholar 

  55. Subramanian V, Evans DG (2012) J Phys Chem B 116:9287–9302

    PubMed  CAS  Google Scholar 

  56. Ulvik RJ, Romslo I, Roland F, Crichton RR (1981) Biochimica et Biophysica Acta (BBA)- General Subj 677:50–56

    CAS  Google Scholar 

  57. Satoh J, Kimata S, Nakamoto S, Ishii T, Tanaka E, Yumoto S, Takeda K, Yoshimura E, Kanesaki Y, Ishige T, Tanaka K, Abe A, Kawasaki S, Niimura Y (2019) J General Appl Microbiol 65:308–315

    CAS  Google Scholar 

  58. Takaishi K, Kitahata H (2019) J Med Invest 66:230–232

    PubMed  Google Scholar 

  59. Subhadarshanee B, Mohanty A, Jagdev MK, Vasudevan D, Behera RK (2017) Biochem Biophys Acta 1865:1267–1273

    CAS  Google Scholar 

  60. Khare G, Gupta V, Nangpal P, Gupta RK, Sauter NK, Tyagi AK (2011) PLoS ONE 6:e18570

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Gupta V, Gupta RK, Khare G, Salunke DM, Tyagi AK (2009) PLoS ONE 4:e8028

    PubMed  PubMed Central  Google Scholar 

  62. Tosha T, Hasan MR, Theil EC (2008) Proc Natl Acad Sci 105:18182

    PubMed  CAS  Google Scholar 

  63. Behera RK, Nakajima H, Rajbongshi J, Watanabe Y, Mazumdar S (2013) Biochemistry 52:1373–1384

    PubMed  CAS  Google Scholar 

  64. Donlin MJ, Frey RF, Putnam C, Proctor J, Bashkin JK (1998) J Chem Educ 75:437

    CAS  Google Scholar 

  65. Yasmin S, Andrews SC, Moore GR, Le Brun NE (2011) J Biol Chem 286:3473–3483

    PubMed  CAS  Google Scholar 

  66. Roy B, Krishnan SP, Chandrasekaran N, Mukherjee A (2019) In: Verma SK, Das AK (eds) Toxic effects of engineered nanoparticles (metal/metal oxides) on plants using Allium cepa as a model system, Comprehensive analytical chemistry. Elsevier, Amsterdam, pp 125–143

  67. Diculescu VC, Militaru A, Shah A, Qureshi R, Tugulea L, Brett AMO (2010) J Electroanal Chem 647:1–7

    CAS  Google Scholar 

  68. Tatur J, Hagen WR, Heering HA (2009). Dalton Trans. https://doi.org/10.1039/b819775j:2837-2842

    Article  PubMed  Google Scholar 

  69. Jameson GN, Jameson RF, Linert W (2004) Org Biomol Chem 2:2346–2351

    PubMed  CAS  Google Scholar 

  70. 70F. Bou-Abdallah, J. J. Paliakkara, G. Melman and A. Melman (2018) Pharmaceuticals 11

  71. Winkler JR, Gray HB (2014) J Am Chem Soc 136:2930–2939

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Giese B, Wang M, Gao J, Stoltz M, Müller P, Graber M (2009) J Org Chem 74:3621–3625

    PubMed  CAS  Google Scholar 

  73. Place TL, Domann FE, Case AJ (2017) Free Radical Biol Med 113:311–322

    CAS  Google Scholar 

  74. Kuriyan J, Konforti B, Wemmer D (2013) The molecules of life: physical and chemical principles. Garland Science, New York

    Google Scholar 

  75. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller A-F, Teixeira M, Valentine JS (2014) Chem Rev 114:3854–3918

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Johnson LE, Wilkinson T, Arosio P, Melman A, Bou-Abdallah F (2017) Biochimica et Biophysica Acta (BBA) - General Subj 1861:3257–3262

    CAS  Google Scholar 

  77. Douglas T, Ripoll DR (1998) Protein Sci 7:1083–1091

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Chandramouli B, Bernacchioni C, Di Maio D, Turano P, Brancato G (2016) J Biol Chem 291:25617–25628

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Bellapadrona G, Stefanini S, Zamparelli C, Theil EC, Chiancone E (2009) J Biol Chem 284:19101–19109

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Muhoberac BB, Vidal R (2019) Front Neurosci 13:1195

    PubMed  PubMed Central  Google Scholar 

  81. Kettisen K, Bülow L, Sakai H (2015) Bioconjug Chem 26:746–754

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Engineering Research Board (SERB), India (EMR/2016/003894) to R.K.B. and P.K.K., and Department of Biotechnology (DBT), India (BT/PR22042/NNT/28/1247/2017) to R.K.B. and A.P. Authors are thankful to Dr. Elizabeth C. Theil (C.H.O.R.I., USA), Dr. Anil K. Tyagi and Dr. Garima Khare (University of Delhi South Campus, India) and to Dr. Anadi C. Dash (NISER, India) and Dr. Ruma Banerjee (University of Michigan, USA) for their generous support in providing the ferritin clones and for their critical suggestions, respectively. The authors are also thankful to Ms. Sunita Dhaka and Mr. Jayanta Kumar Murmu for their experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindra K. Behera.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Dedicated to Prof. Elizabeth C. Theil (Professor—Emeritus, CHORI and NCSU, USA).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic Supplementary Material

Details of isoelectric point and charge at neutral pH for frog M and Mycobacterial ferritins, electrochemical (cyclic, square wave and differential pulse voltammograms) analysis of flavin mediators, kinetics and initial rates of iron release by flavin mediators from different ferritins, kinetics of NADH oxidation and dissolved O2 consumption at different concentration of flavin mediators, kinetics of iron release by discontinuous ferrozine assay, effect of SOD and kinetics of formation of formazan at different time intervals, kinetics of iron release by flavins under anaerobic conditions and in the presence of SOD and molecular docking results for NADH-flavins/flavins-ferritins interaction. (PDF 2200 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koochana, P.K., Mohanty, A., Parida, A. et al. Flavin-mediated reductive iron mobilization from frog M and Mycobacterial ferritins: impact of their size, charge and reactivities with NADH/O2 . J Biol Inorg Chem 26, 265–281 (2021). https://doi.org/10.1007/s00775-021-01850-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01850-2

Keywords

Navigation