Skip to main content

Advertisement

Log in

Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry

  • Mini Review
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis (Mtb) has an old history as a human pathogen and still kills over one million people every year. One key feature of this bacterium is its dormancy: a phenomenon responsible for major changes in its metabolism and replication that have been associated with the need for a lengthy therapy for Mtb. This process is regulated by key heme-based sensors, particularly DosT and DevS (DosS), among other co-regulators, and also linked to nitrogen utilization (nitrate/nitrite) and stringent responses. In face of the current threat of tuberculosis, there is an urgent need to develop new therapeutic agents capable of targeting the dormant state, associated with the need for a lengthy therapy. Interestingly, many of those key proteins are indeed metallo-containing or metallo-dependent biomolecules, opening exciting bioinorganic opportunities. Here, we critically reviewed a series of small molecules targeting key proteins involved in these processes, including DosT/DevS/DevR, RegX3, MprA, MtrA, NarL, PknB, Rel, PPK, nitrate and nitrite reductases, GlnA1, aiming for new opportunities and alternative therapies.

Graphic abstract

In the battle against Mycobacterium tuberculosis, new drug targets must be searched, in particular  those involved in dormancy. A series of exciting cases for drug development involving metallo-containing or metallo-dependent biomolecules are reviewed, opening great opportunities for the bioinorganic chemistry community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DosT:

Histidine kinase sensor of the oxygen-responsive two-component system (DevS/DosT/DevR)

DevS(DosS):

Histidine kinase sensor of the oxygen-responsive two-component system (DevS/DosT/DevR)

DevR(DosR):

Response regulator of the oxygen-responsive two-component system (DevS/DosT/DevR)

RegX3:

Response regulator of the two-component system (SenX3/RegX3)

MprA:

Response regulator of the two-component system (MprB/MprA)

MtrA:

Response regulator of the two-component system (MtrB/MtrA)

NarL:

Response regulator of a nitrite-responsive two-component system (NarS/NarL)

PknB:

Serine and threonine kinase

Rel:

(p)ppGpp synthase and phosphatase enzyme

PPK:

Polyphosphate kinase

Nar:

Nitrate reductase

Nir:

Nitrite reductase

GlnA1:

Glutamine synthetase

SAR:

Structure–activity relationship

QSAR:

Quantitative structure–activity relationship

References

  1. Global tuberculosis report 2019. Geneva: World Health Organization; 2019. License: CC BY-NC-SA 3.0 IGO. ISBN 978-92-4-156571-4

  2. Gupta VK, Kumar MM, Singh D, Bisht D, Sharma S (2018) Drug targets in dormant Mycobacterium tuberculosis: can the conquest against tuberculosis become a reality? Infect Dis-Nor 50(2):81–94. https://doi.org/10.1080/23744235.2017.1377346

    Article  Google Scholar 

  3. Dermott WMC (1958) Microbial persistence. Yale J Biol Med 30(4):257–291

    Google Scholar 

  4. Martin CJ, Carey AF, Fortune SM (2016) A bug's life in the granuloma. Semin Immunopathol 38(2):213–220. https://doi.org/10.1007/s00281-015-0533-1

    Article  CAS  PubMed  Google Scholar 

  5. Koch A, Mizrahi V (2018) Mycobacterium tuberculosis. Trends Microbiol 26(6):555–556. https://doi.org/10.1016/j.tim.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  6. Levinson W (2016) Review of medical microbiology and immunology, 14th edn. McGraw-Hill Education, San Francisco (ISBN 0071845755)

    Google Scholar 

  7. Boon C, Li R, Qi R, Dick T (2001) Proteins of Mycobacterium bovis BCG induced in the Wayne dormancy model. J Bacteriol 183(8):2672–2676. https://doi.org/10.1128/JB.183.8.2672-2676.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prusa J, Zhu DX, Stallings CL (2018) The stringent response and Mycobacterium tuberculosis pathogenesis. Pathog Dis 76(5):1–13. https://doi.org/10.1093/femspd/fty054

    Article  CAS  Google Scholar 

  9. Ekpenyong O, Gao X, Ma J, Cooper C, Nguyen L, Olaleye OA, Liang D, Xie H (2020) Pre-clinical pharmacokinetics, tissue distribution and physicochemical studies of CLBQ14, a novel methionine aminopeptidase inhibitor for the treatment of infectious diseases. Drug Des Devel Ther 14:1263–1277. https://doi.org/10.2147/DDDT.S238148

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gutti G, Arya K, Singh SK (2019) Latent tuberculosis infection (LTBI) and its potential targets: an investigation into dormant phase pathogens. Mini Rev Med Chem 19(19):1627–1642. https://doi.org/10.2174/1389557519666190625165512

    Article  CAS  PubMed  Google Scholar 

  11. Devi PB, Sridevi JP, Kakan SS, Saxena S, Jeankumar VU, Soni V, Anantaraju HS, Yogeeswari P, Sriram D (2015) Discovery of novel lysine varepsilon-aminotransferase inhibitors: an intriguing potential target for latent tuberculosis. Tuberculosis (Edinb) 95(6):786–794. https://doi.org/10.1016/j.tube.2015.04.010

    Article  CAS  Google Scholar 

  12. Cook GM, Hards K, Dunn E, Heikal A, Nakatani Y, Greening C, Crick DC, Fontes FL, Pethe K, Hasenoehrl E, Berney M (2017) Oxidative phosphorylation as a target space for tuberculosis: success, caution, and future directions. Microbiol Spectr 5(3):1–22. https://doi.org/10.1128/microbiolspec.TBTB2-0014-2016

    Article  Google Scholar 

  13. Gupta VK, Kumar MM, Singh D, Bisht D, Sharma S (2018) Drug targets in dormant Mycobacterium tuberculosis: can the conquest against tuberculosis become a reality? Infect Dis (Lond) 50(2):81–94. https://doi.org/10.1080/23744235.2017.1377346

    Article  Google Scholar 

  14. Wayne LG, Hayes LG (1998) Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis. Tuber Lung Dis 79(2):127–132. https://doi.org/10.1054/tuld.1998.0015

    Article  CAS  PubMed  Google Scholar 

  15. Malhotra V, Agrawal R, Duncan TR, Saini DK, Clark-Curtiss JE (2015) Mycobacterium tuberculosis response regulators, DevR and NarL, interact in vivo and co-regulate gene expression during aerobic nitrate metabolism. J Biol Chem 290(13):8294–8309. https://doi.org/10.1074/jbc.M114.591800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Wang X, Jin S, Muhammad N, Guo Z (2019) Stimuli-responsive therapeutic metallodrugs. Chem Rev 119(2):1138–1192. https://doi.org/10.1021/acs.chemrev.8b00209

    Article  CAS  PubMed  Google Scholar 

  17. Ong YC, Roy S, Andrews PC, Gasser G (2019) Metal compounds against neglected tropical diseases. Chem Rev 119(2):730–796. https://doi.org/10.1021/acs.chemrev.8b00338

    Article  CAS  PubMed  Google Scholar 

  18. Cohen SM (2017) A bioinorganic approach to fragment-based drug discovery targeting metalloenzymes. Acc Chem Res 50(8):2007–2016. https://doi.org/10.1021/acs.accounts.7b00242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Credille CV, Dick BL, Morrison CN, Stokes RW, Adamek RN, Wu NC, Wilson IA, Cohen SM (2018) Structure-activity relationships in metal-binding pharmacophores for influenza endonuclease. J Med Chem 61(22):10206–10217. https://doi.org/10.1021/acs.jmedchem.8b01363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morrison CN, Prosser KE, Stokes RW, Cordes A, Metzler-Nolte N, Cohen SM (2020) Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery. Chem Sci 11(5):1216–1225. https://doi.org/10.1039/C9SC05586J

    Article  CAS  Google Scholar 

  21. Dorr M, Meggers E (2014) Metal complexes as structural templates for targeting proteins. Curr Opin Chem Biol 19:76–81. https://doi.org/10.1016/j.cbpa.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  22. Chellan P, Sadler PJ (2020) Enhancing the activity of drugs by conjugation to organometallic fragments. Chem Eur J. https://doi.org/10.1002/chem.201904699

    Article  PubMed  Google Scholar 

  23. Lopes LGF, Carvalho EM, Sousa EHS (2020) A bioinorganic chemistry perspective on the roles of metals as drug and targets against Mycobacterium tuberculosis—a journey of opportunities. Dalton Trans. https://doi.org/10.1039/D0DT01365J

    Article  PubMed  Google Scholar 

  24. Viganor L, Skerry C, McCann M, Devereux M (2015) Tuberculosis: an inorganic medicinal chemistry perspective. Curr Med Chem 22(18):2199–2224. https://doi.org/10.2174/0929867322666150408112357

    Article  CAS  PubMed  Google Scholar 

  25. Maguene GM, Jakhlal J, Ladyman M, Vallin A, Ralambomanana DA, Bousquet T, Maugein J, Lebibi J, Pelinski L (2011) Synthesis and antimycobacterial activity of a series of ferrocenyl derivatives. Eur J Med Chem 46(1):31–38. https://doi.org/10.1016/j.ejmech.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  26. Oliveira JS, Sousa EHS, Basso LA, Palaci M, Dietze R, Santos DS, Moreira IS (2004) An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Chem Commun (Camb) 3:312–313. https://doi.org/10.1039/b313592f

    Article  CAS  Google Scholar 

  27. Garner RN, Pierce CG, Reed CR, Brennessel WW (2017) Photoinitiated treatment of Mycobacterium using Ru(II) isoniazid complexes. Inorg Chim Acta 461:261–266. https://doi.org/10.1016/j.ica.2017.02.031

    Article  CAS  Google Scholar 

  28. Smith NA, Zhang P, Greenough SE, Horbury MD, Clarkson GJ, McFeely D, Habtemariam A, Salassa L, Stavros VG, Dowson CG, Sadler PJ (2017) Combatting AMR: photoactivatable ruthenium(ii)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chem Sci 8(1):395–404. https://doi.org/10.1039/c6sc03028a

    Article  CAS  PubMed  Google Scholar 

  29. Nunes ED, Villela AD, Basso LA, Teixeira EH, Andrade AL, Vasconcelos MA, Neto LGD, Gondim ACS, Diogenes ICN, Romo AIB, Nascimento OR, Zampieri D, Paulo TF, de Carvalho IMM, Lopes LGD, Sousa EHS (2020) Light-induced disruption of an acyl hydrazone link as a novel strategy for drug release and activation: isoniazid as a proof-of-concept case. Inorg Chem Front 7(4):859–870. https://doi.org/10.1039/c9qi01172b

    Article  CAS  Google Scholar 

  30. Sousa EHS, de Mesquita Vieira FG, Butler JS, Basso LA, Santiago DS, Diogenes IC, Lopes LG, Sadler PJ (2014) [Fe(CN)5(isoniazid)]3-: an iron isoniazid complex with redox behavior implicated in tuberculosis therapy. J Inorg Biochem 140:236–244. https://doi.org/10.1016/j.jinorgbio.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  31. Laborde J, Deraeve C, de Mesquita Vieira FG, Sournia-Saquet A, Rechignat L, Villela AD, Abbadi BL, Macchi FS, Pissinate K, Bizarro CV, Machado P, Basso LA, Pratviel G, de Franca Lopes LG, Sousa EHS, Bernardes-Genisson V (2018) Synthesis and mechanistic investigation of iron(II) complexes of isoniazid and derivatives as a redox-mediated activation strategy for anti-tuberculosis therapy. J Inorg Biochem 179:71–81. https://doi.org/10.1016/j.jinorgbio.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  32. Rodrigues-Junior VS, Villela AD, Abbadi BL, Sperotto NDM, Pissinate K, Picada JN, Bondan da Silva J, Bizarro CV, Machado P, Basso LA (2020) Nonclinical evaluation of IQG-607, an anti-tuberculosis candidate with potential use in combination drug therapy. Regul Toxicol Pharmacol 111:1–6. https://doi.org/10.1016/j.yrtph.2019.104553

    Article  CAS  Google Scholar 

  33. Pavan FR, Poelhsitz GV, da Cunha LV, Barbosa MI, Leite SR, Batista AA, Cho SH, Franzblau SG, de Camargo MS, Resende FA, Varanda EA, Leite CQ (2013) In vitro and in vivo activities of ruthenium(II) phosphine/diimine/picolinate complexes (SCAR) against Mycobacterium tuberculosis. PLoS ONE 8(5):1–10. https://doi.org/10.1371/journal.pone.0064242

    Article  CAS  Google Scholar 

  34. Gama NH, Elkhadir AY, Gordhan BG, Kana BD, Darkwa J, Meyer D (2016) Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis. Biometals 29(4):637–650. https://doi.org/10.1007/s10534-016-9940-6

    Article  CAS  PubMed  Google Scholar 

  35. WHO (2020) Lack of new antibiotics threatens global efforts to contain drug-resistant infections. https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistantinfections. Accessed 28 Mar 2020

  36. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9(2):117–128. https://doi.org/10.1038/nrd3013

    Article  CAS  PubMed  Google Scholar 

  37. Tiwari S, Jamal SB, Hassan SS, Carvalho P, Almeida S, Barh D, Ghosh P, Silva A, Castro TLP, Azevedo V (2017) Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview. Front Microbiol 8:1–7. https://doi.org/10.3389/fmicb.2017.01878

    Article  Google Scholar 

  38. Bem AE, Velikova N, Pellicer MT, Baarlen P, Marina A, Wells JM (2015) Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol 10(1):213–224. https://doi.org/10.1021/cb5007135

    Article  CAS  PubMed  Google Scholar 

  39. Njoroge J, Sperandio V (2009) Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med 1(4):201–210. https://doi.org/10.1002/emmm.200900032

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154. https://doi.org/10.1146/annurev.micro.091208.073214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zschiedrich CP, Keidel V, Szurmant H (2016) Molecular mechanisms of two-component signal transduction. J Mol Biol 428(19):3752–3775. https://doi.org/10.1016/j.jmb.2016.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goswami M, Espinasse A, Carlson EE (2018) Disarming the virulence arsenal of Pseudomonas aeruginosa by blocking two-component system signaling. Chem Sci 9(37):7332–7337. https://doi.org/10.1039/c8sc02496k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singh S, Goswami N, Tyagi AK, Khare G (2019) Unraveling the role of the transcriptional regulator VirS in low pH-induced responses of Mycobacterium tuberculosis and identification of VirS inhibitors. J Biol Chem 294(26):10055–10075. https://doi.org/10.1074/jbc.RA118.005312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng HQ, Colvin CJ, Johnson BK, Kirchhoff PD, Wilson M, Jorgensen-Muga K, Larsen SD, Abramovitch RB (2017) Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat Chem Biol 13(2):218–225. https://doi.org/10.1038/Nchembio.2259

    Article  CAS  PubMed  Google Scholar 

  45. Kaur K, Taneja NK, Dhingra S, Tyagi JS (2014) DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase. BMC Microbiol 14:1–9. https://doi.org/10.1186/1471-2180-14-195

    Article  CAS  Google Scholar 

  46. Banerjee SK, Kumar M, Alokam R, Sharma AK, Chatterjee A, Kumar R, Sahu SK, Jana K, Singh R, Yogeeswari P, Sriram D, Basu J, Kundu M (2016) Targeting multiple response regulators of Mycobacterium tuberculosis augments the host immune response to infection. Sci Rep 6:1–15. https://doi.org/10.1038/srep25851

    Article  CAS  Google Scholar 

  47. Gupta RK, Thakur TS, Desiraju GR, Tyagi JS (2009) Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J Med Chem 52(20):6324–6334. https://doi.org/10.1021/jm900358q

    Article  CAS  PubMed  Google Scholar 

  48. Eguchi Y, Okajima T, Tochio N, Inukai Y, Shimizu R, Ueda S, Shinya S, Kigawa T, Fukamizo T, Igarashi M, Utsumi R (2017) Angucycline antibiotic waldiomycin recognizes common structural motif conserved in bacterial histidine kinases. J Antibiot (Tokyo) 70(3):251–258. https://doi.org/10.1038/ja.2016.151

    Article  CAS  Google Scholar 

  49. Velikova N, Mas N, Miguel-Romero L, Polo L, Stolte E, Zaccaria E, Cao R, Taverne N, Murguia JR, Martinez-Manez R, Marina A, Wells J (2017) Broadening the antibacterial spectrum of histidine kinase autophosphorylation inhibitors via the use of epsilon-poly-L-lysine capped mesoporous silica-based nanoparticles. Nanomedicine 13(2):569–581. https://doi.org/10.1016/j.nano.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  50. Carabajal MA, Asquith CRM, Laitinen T, Tizzard GJ, Yim L, Rial A, Chabalgoity JA, Zuercher WJ, Garcia Vescovi E (2019) Quinazoline-based anti-virulence compounds selectively target Salmonella PhoP/PhoQ signal transduction system. Antimicrob Agents Chemother 64(1):e01744–e11719. https://doi.org/10.1128/AAC.01744-19

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang L, Carroll P, Meggers E (2004) Ruthenium complexes as protein kinase inhibitors. Org Lett 6(4):521–523. https://doi.org/10.1021/ol036283s

    Article  CAS  PubMed  Google Scholar 

  52. Yuan T, Sampson NS (2018) Hit generation in TB drug discovery: from genome to granuloma. Chem Rev 118(4):1887–1916. https://doi.org/10.1021/acs.chemrev.7b00602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sousa EHS, Gilles-Gonzalez MA (2017) Haem-based sensors of O2: lessons and perspectives. Adv Microb Physiol 71:235–257. https://doi.org/10.1016/bs.ampbs.2017.05.001

    Article  PubMed  Google Scholar 

  54. Gilles-Gonzalez MA, Gonzalez G (2005) Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses. J Inorg Biochem 99(1):1–22. https://doi.org/10.1016/j.jinorgbio.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  55. Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtikova V, Martinkova M (2015) Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 115(13):6491–6533. https://doi.org/10.1021/acs.chemrev.5b00018

    Article  CAS  PubMed  Google Scholar 

  56. Gilles-Gonzalez MA, Ditta GS, Helinski DR (1991) A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350(6314):170–172. https://doi.org/10.1038/350170a0

    Article  CAS  PubMed  Google Scholar 

  57. Sousa EH, Lopes LG, Gonzalez G, Gilles-Gonzalez MA (2017) Drug discovery targeting heme-based sensors and their coupled activities. J Inorg Biochem 167:12–20. https://doi.org/10.1016/j.jinorgbio.2016.11.022

    Article  CAS  PubMed  Google Scholar 

  58. Zheng H, Abramovitch RB (2020) Inhibiting DosRST as a new approach to tuberculosis therapy. Future Med Chem 12(5):457–467. https://doi.org/10.4155/fmc-2019-0263

    Article  CAS  PubMed  Google Scholar 

  59. Gilles-Gonzalez MA, Gonzalez G, Sousa EHS, Tuckerman J (2008) Oxygen-sensing histidine-protein kinases: assays of ligand binding and turnover of response-regulator substrates. Methods Enzymol 437:173–189. https://doi.org/10.1016/S0076-6879(07)37010-9

    Article  CAS  PubMed  Google Scholar 

  60. Sousa EHS, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA (2007) DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci 16(8):1708–1719. https://doi.org/10.1110/ps.072897707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muttucumaru DG, Roberts G, Hinds J, Stabler RA, Parish T (2004) Gene expression profile of Mycobacterium tuberculosis in a non-replicating state. Tuberculosis (Edinb) 84(3–4):239–246. https://doi.org/10.1016/j.tube.2003.12.006

    Article  Google Scholar 

  62. Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR (2004) Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem 279(22):23082–23087. https://doi.org/10.1074/jbc.M401230200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sousa EHS, Gonzalez G, Gilles-Gonzalez MA (2017) Target DNA stabilizes Mycobacterium tuberculosis DevR/DosR phosphorylation by the full-length oxygen sensors DevS/DosS and DosT. FEBS J 284(22):3954–3967. https://doi.org/10.1111/febs.14284

    Article  CAS  PubMed  Google Scholar 

  64. Gautam US, Mehra S, Kumari P, Alvarez X, Niu T, Tyagi JS, Kaushal D (2019) Mycobacterium tuberculosis sensor kinase DosS modulates the autophagosome in a DosR-independent manner. Commun Biol 2:1–12. https://doi.org/10.1038/s42003-019-0594-0

    Article  CAS  Google Scholar 

  65. Mehra S, Foreman TW, Didier PJ, Ahsan MH, Hudock TA, Kissee R, Golden NA, Gautam US, Johnson AM, Alvarez X, Russell-Lodrigue KE, Doyle LA, Roy CJ, Niu T, Blanchard JL, Khader SA, Lackner AA, Sherman DR, Kaushal D (2015) The DosR regulon modulates adaptive immunity and is essential for Mycobacterium tuberculosis Persistence. Am J Respir Crit Care Med 191(10):1185–1196. https://doi.org/10.1164/rccm.201408-1502OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Converse PJ, Karakousis PC, Klinkenberg LG, Kesavan AK, Ly LH, Allen SS, Grosset JH, Jain SK, Lamichhane G, Manabe YC, McMurray DN, Nuermberger EL, Bishai WR (2009) Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. Infect Immun 77(3):1230–1237. https://doi.org/10.1128/IAI.01117-08

    Article  CAS  PubMed  Google Scholar 

  67. Dhingra S, Kaur K, Taneja NK, Tyagi JS (2012) DevR (DosR) binding peptide inhibits adaptation of Mycobacterium tuberculosis under hypoxia. Fems Microbiol Lett 330(1):66–71. https://doi.org/10.1111/j.1574-6968.2012.02534.x

    Article  CAS  PubMed  Google Scholar 

  68. Zheng H, Williams JT, Aleiwi B, Ellsworth E, Abramovitch RB (2020) Inhibiting Mycobacterium tuberculosis DosRST signaling by targeting response regulator DNA binding and sensor kinase heme. ACS Chem Biol 15(1):52–62. https://doi.org/10.1021/acschembio.8b00849

    Article  CAS  PubMed  Google Scholar 

  69. Patel YS, Mistry N, Mehra S (2019) Repurposing artemisinin as an anti-mycobacterial agent in synergy with rifampicin. Tuberculosis (Edinb) 115:146–153. https://doi.org/10.1016/j.tube.2019.03.004

    Article  CAS  Google Scholar 

  70. Barreto GA, Carepo MSP, Gondim ACS, Guimaraes WG, Lopes LGF, Bernhardt PV, Paulo TF, Sousa EHS, Diogenes ICN (2019) A spectroelectrochemical investigation of the heme-based sensor DevS from Mycobacterium tuberculosis: a redox versus oxygen sensor. FEBS J 286(21):4278–4293. https://doi.org/10.1111/febs.14974

    Article  CAS  PubMed  Google Scholar 

  71. Gilles-Gonzalez MA, Gonzalez G (1993) Regulation of the kinase activity of heme protein FixL from the two-component system FixL/FixJ of Rhizobium meliloti. J Biol Chem 268(22):16293–16297

    CAS  PubMed  Google Scholar 

  72. Gwizdala C, Burdette SC (2013) Following the Ca(2)(+) roadmap to photocaged complexes for Zn(2)(+) and beyond. Curr Opin Chem Biol 17(2):137–142. https://doi.org/10.1016/j.cbpa.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  73. Salina EG, Huszar S, Zemanova J, Keruchenko J, Riabova O, Kazakova E, Grigorov A, Azhikina T, Kaprelyants A, Mikusova K, Makarov V (2018) Copper-related toxicity in replicating and dormant Mycobacterium tuberculosis caused by 1-hydroxy-5-R-pyridine-2(1H)-thiones. Metallomics 10(7):992–1002. https://doi.org/10.1039/c8mt00067k

    Article  CAS  PubMed  Google Scholar 

  74. Parish T (2014) Two-component regulatory systems of Mycobacteria. Microbiol Spectr 2(1):1–14. https://doi.org/10.1128/microbiolspec.MGM2-0010-2013

    Article  CAS  Google Scholar 

  75. Fol M, Chauhan A, Nair NK, Maloney E, Moomey M, Jagannath C, Madiraju MV, Rajagopalan M (2006) Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol 60(3):643–657. https://doi.org/10.1111/j.1365-2958.2006.05137.x

    Article  CAS  PubMed  Google Scholar 

  76. Rifat D, Belchis DA, Karakousis PC (2014) SenX3-independent contribution of RegX3 to Mycobacterium tuberculosis virulence. BMC Microbiol 14:1–12. https://doi.org/10.1186/s12866-014-0265-8

    Article  CAS  Google Scholar 

  77. Elliott SR, Tischler AD (2016) Phosphate starvation: a novel signal that triggers ESX-5 secretion in Mycobacterium tuberculosis. Mol Microbiol 100(3):510–526. https://doi.org/10.1111/mmi.13332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zahrt TC, Wozniak C, Jones D, Trevett A (2003) Functional analysis of the Mycobacterium tuberculosis MprAB two-component signal transduction system. Infect Immun 71(12):6962–6970. https://doi.org/10.1128/iai.71.12.6962-6970.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zahrt TC, Deretic V (2001) Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci U S A 98(22):12706–12711. https://doi.org/10.1073/pnas.221272198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lefevre P, Braibant M, de Wit L, Kalai M, Roeper D, Grotzinger J, Delville JP, Peirs P, Ooms J, Huygen K, Content J (1997) Three different putative phosphate transport receptors are encoded by the Mycobacterium tuberculosis genome and are present at the surface of Mycobacterium bovis BCG. J Bacteriol 179(9):2900–2906. https://doi.org/10.1128/jb.179.9.2900-2906.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kriakov J, Lee S, Jacobs WR Jr (2003) Identification of a regulated alkaline phosphatase, a cell surface-associated lipoprotein, in Mycobacterium smegmatis. J Bacteriol 185(16):4983–4991. https://doi.org/10.1128/jb.185.16.4983-4991.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Glover RT, Kriakov J, Garforth SJ, Baughn AD, Jacobs WR Jr (2007) The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J Bacteriol 189(15):5495–5503. https://doi.org/10.1128/JB.00190-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Singh N, Kumar A (2015) Virulence factor SenX3 is the oxygen-controlled replication switch of Mycobacterium tuberculosis. Antioxid Redox Signal 22(7):603–613. https://doi.org/10.1089/ars.2014.6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rifat D, Bishai WR, Karakousis PC (2009) Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J Infect Dis 200(7):1126–1135. https://doi.org/10.1086/605700

    Article  CAS  PubMed  Google Scholar 

  85. Karakousis PC, Yoshimatsu T, Lamichhane G, Woolwine SC, Nuermberger EL, Grosset J, Bishai WR (2004) Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. J Exp Med 200(5):647–657. https://doi.org/10.1084/jem.20040646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bretl DJ, He H, Demetriadou C, White MJ, Penoske RM, Salzman NH, Zahrt TC (2012) MprA and DosR coregulate a Mycobacterium tuberculosis virulence operon encoding Rv1813c and Rv1812c. Infect Immun 80(9):3018–3033. https://doi.org/10.1128/IAI.00520-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. He H, Bretl DJ, Penoske RM, Anderson DM, Zahrt TC (2011) Components of the Rv0081-Rv0088 locus, which encodes a predicted formate hydrogenlyase complex, are coregulated by Rv0081, MprA, and DosR in Mycobacterium tuberculosis. J Bacteriol 193(19):5105–5118. https://doi.org/10.1128/JB.05562-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE 3rd (2000) The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182(17):4889–4898. https://doi.org/10.1128/jb.182.17.4889-4898.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dutta NK, Klinkenberg LG, Vazquez MJ, Segura-Carro D, Colmenarejo G, Ramon F, Rodriguez-Miquel B, Mata-Cantero L, Porras-De Francisco E, Chuang YM, Rubin H, Lee JJ, Eoh H, Bader JS, Perez-Herran E, Mendoza-Losana A, Karakousis PC (2019) Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence. Sci Adv 5(3):1–13. https://doi.org/10.1126/sciadv.aav2104

    Article  CAS  Google Scholar 

  90. Shivakumar KV, Karunakar P, Chatterjee J (2014) Inhibition of NarL of Mycobacterium tuberculosis: an in silico approach. Interdiscip Sci 6(4):292–299. https://doi.org/10.1007/s12539-014-0179-z

    Article  CAS  PubMed  Google Scholar 

  91. Kumar N, Srivastava R, Prakash A, Lynn AM (2019) Structure-based virtual screening, molecular dynamics simulation and MM-PBSA toward identifying the inhibitors for two-component regulatory system protein NarL of Mycobacterium tuberculosis. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2019.1657499

    Article  PubMed  Google Scholar 

  92. Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, Huygen K, Hernandez-Pando R, Thole J, Behr M, Gicquel B, Martin C (2008) PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 3(10):1–11. https://doi.org/10.1371/journal.pone.0003496

    Article  CAS  Google Scholar 

  93. Feng L, Chen S, Hu Y (2018) PhoPR positively regulates whiB3 expression in response to low pH in pathogenic Mycobacteria. J Bacteriol 200(8):1–11. https://doi.org/10.1128/JB.00766-17

    Article  CAS  Google Scholar 

  94. Manganelli R (2007) Polyphosphate and stress response in mycobacteria. Mol Microbiol 65(2):258–260. https://doi.org/10.1111/j.1365-2958.2007.05819.x

    Article  CAS  PubMed  Google Scholar 

  95. Kulakovskaya T (2018) Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol 34(9):1–8. https://doi.org/10.1007/s11274-018-2523-7

    Article  CAS  Google Scholar 

  96. Hobbs JK, Boraston AB (2019) (p)ppGpp and the stringent response: an emerging threat to antibiotic therapy. ACS Infect Dis 5(9):1505–1517. https://doi.org/10.1021/acsinfecdis.9b00204

    Article  CAS  PubMed  Google Scholar 

  97. Dahl JL, Kraus CN, Boshoff HI, Doan B, Foley K, Avarbock D, Kaplan G, Mizrahi V, Rubin H, Barry CE 3rd (2003) The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci USA 100(17):10026–10031. https://doi.org/10.1073/pnas.1631248100

    Article  CAS  PubMed  Google Scholar 

  98. Tiwari P, Gosain TP, Singh M, Sankhe GD, Arora G, Kidwai S, Agarwal S, Chugh S, Saini DK, Singh R (2019) Inorganic polyphosphate accumulation suppresses the dormancy response and virulence in Mycobacterium tuberculosis. J Biol Chem 294(28):10819–10832. https://doi.org/10.1074/jbc.RA119.008370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Singh R, Singh M, Arora G, Kumar S, Tiwari P, Kidwai S (2013) Polyphosphate deficiency in Mycobacterium tuberculosis is associated with enhanced drug susceptibility and impaired growth in guinea pigs. J Bacteriol 195(12):2839–2851. https://doi.org/10.1128/JB.00038-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sureka K, Dey S, Datta P, Singh AK, Dasgupta A, Rodrigue S, Basu J, Kundu M (2007) Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol 65(2):261–276. https://doi.org/10.1111/j.1365-2958.2007.05814.x

    Article  CAS  PubMed  Google Scholar 

  101. Sureka K, Sanyal S, Basu J, Kundu M (2009) Polyphosphate kinase 2: a modulator of nucleoside diphosphate kinase activity in mycobacteria. Mol Microbiol 74(5):1187–1197. https://doi.org/10.1111/j.1365-2958.2009.06925.x

    Article  CAS  PubMed  Google Scholar 

  102. Singh M, Tiwari P, Arora G, Agarwal S, Kidwai S, Singh R (2016) Establishing virulence associated polyphosphate kinase 2 as a drug target for Mycobacterium tuberculosis. Sci Rep 6:1–13. https://doi.org/10.1038/srep26900

    Article  CAS  Google Scholar 

  103. Thayil SM, Morrison N, Schechter N, Rubin H, Karakousis PC (2011) The role of the novel exopolyphosphatase MT0516 in Mycobacterium tuberculosis drug tolerance and persistence. PLoS ONE 6(11):e28076. https://doi.org/10.1371/journal.pone.0028076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shum KT, Lui EL, Wong SC, Yeung P, Sam L, Wang Y, Watt RM, Tanner JA (2011) Aptamer-mediated inhibition of Mycobacterium tuberculosis polyphosphate kinase 2. Biochemistry 50(15):3261–3271. https://doi.org/10.1021/bi2001455

    Article  CAS  PubMed  Google Scholar 

  105. Burda-Grabowska M, Macegoniuk K, Flick R, Nocek BP, Joachimiak A, Yakunin AF, Mucha A, Berlicki L (2019) Bisphosphonic acids and related compounds as inhibitors of nucleotide- and polyphosphate-processing enzymes: A PPK1 and PPK2 case study. Chem Biol Drug Des 93(6):1197–1206. https://doi.org/10.1111/cbdd.13439

    Article  CAS  PubMed  Google Scholar 

  106. Klinkenberg LG, Lee JH, Bishai WR, Karakousis PC (2010) The stringent response is required for full virulence of Mycobacterium tuberculosis in guinea pigs. J Infect Dis 202(9):1397–1404. https://doi.org/10.1086/656524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kushwaha GS, Oyeyemi BF, Bhavesh NS (2019) Stringent response protein as a potential target to intervene persistent bacterial infection. Biochimie 165:67–75. https://doi.org/10.1016/j.biochi.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  108. Syal K, Flentie K, Bhardwaj N, Maiti K, Jayaraman N, Stallings CL, Chatterji D (2017) Synthetic (p)ppGpp analogue is an inhibitor of stringent response in Mycobacteria. Antimicrob Agents Chemother 61(6):1–14. https://doi.org/10.1128/AAC.00443-17

    Article  Google Scholar 

  109. Wexselblatt E, Oppenheimer-Shaanan Y, Kaspy I, London N, Schueler-Furman O, Yavin E, Glaser G, Katzhendler J, Ben-Yehuda S (2012) Relacin, a novel antibacterial agent targeting the stringent response. PLoS Pathog 8(9):e1002925. https://doi.org/10.1371/journal.ppat.1002925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wexselblatt E, Kaspy I, Glaser G, Katzhendler J, Yavin E (2013) Design, synthesis and structure-activity relationship of novel Relacin analogs as inhibitors of Rel proteins. Eur J Med Chem 70:497–504. https://doi.org/10.1016/j.ejmech.2013.10.036

    Article  CAS  PubMed  Google Scholar 

  111. Avarbock D, Avarbock A, Rubin H (2000) Differential regulation of opposing RelMtb activities by the aminoacylation state of a tRNA.ribosome.mRNA.RelMtb complex. Biochemistry 39(38):11640–11648. https://doi.org/10.1021/bi001256k

    Article  CAS  PubMed  Google Scholar 

  112. Sajish M, Tiwari D, Rananaware D, Nandicoori VK, Prakash B (2007) A charge reversal differentiates (p)ppGpp synthesis by monofunctional and bifunctional Rel proteins. J Biol Chem 282(48):34977–34983. https://doi.org/10.1074/jbc.M704828200

    Article  CAS  PubMed  Google Scholar 

  113. Khan MZ, Kaur P, Nandicoori VK (2018) Targeting the messengers: serine/threonine protein kinases as potential targets for antimycobacterial drug development. IUBMB Life 70(9):889–904. https://doi.org/10.1002/iub.1871

    Article  CAS  PubMed  Google Scholar 

  114. Bellinzoni M, Wehenkel AM, Duran R, Alzari PM (2019) Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases. Genes Immun 20(5):383–393. https://doi.org/10.1038/s41435-019-0069-9

    Article  PubMed  Google Scholar 

  115. Knape MJ, Herberg FW (2017) Metal coordination in kinases and pseudokinases. Biochem Soc Trans 45(3):653–663. https://doi.org/10.1042/BST20160327

    Article  CAS  PubMed  Google Scholar 

  116. Young TA, Delagoutte B, Endrizzi JA, Falick AM, Alber T (2003) Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Biol 10(3):168–174. https://doi.org/10.1038/nsb897

    Article  CAS  PubMed  Google Scholar 

  117. Bae HJ, Lee HN, Baek MN, Park EJ, Eom CY, Ko IJ, Kang HY, Oh JI (2017) Inhibition of the DevSR Two-component system by overexpression of Mycobacterium tuberculosis PknB in Mycobacterium smegmatis. Mol Cells 40(9):632–642. https://doi.org/10.14348/molcells.2017.0076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dhiman R, Singh R (2018) Recent advances for identification of new scaffolds and drug targets for Mycobacterium tuberculosis. IUBMB Life 70(9):905–916. https://doi.org/10.1002/iub.1863

    Article  CAS  PubMed  Google Scholar 

  119. Carette X, Platig J, Young DC, Helmel M, Young AT, Wang Z, Potluri LP, Moody CS, Zeng J, Prisic S, Paulson JN, Muntel J, Madduri AVR, Velarde J, Mayfield JA, Locher C, Wang T, Quackenbush J, Rhee KY, Moody DB, Steen H, Husson RN (2018) Multisystem analysis of Mycobacterium tuberculosis reveals kinase-dependent remodeling of the pathogen-environment interface. MBio 9(2):1–21. https://doi.org/10.1128/mBio.02333-17

    Article  Google Scholar 

  120. Gupta A, Pal SK, Pandey D, Fakir NA, Rathod S, Sinha D, SivaKumar S, Sinha P, Periera M, Balgam S, Sekar G, UmaDevi KR, Anupurba S, Nema V (2017) PknB remains an essential and a conserved target for drug development in susceptible and MDR strains of M. Tuberculosis. Ann Clin Microbiol Antimicrob 16(1):1–10. https://doi.org/10.1186/s12941-017-0234-9

    Article  CAS  Google Scholar 

  121. Ortega C, Liao R, Anderson LN, Rustad T, Ollodart AR, Wright AT, Sherman DR, Grundner C (2014) Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch. PLoS Biol 12(1):e1001746. https://doi.org/10.1371/journal.pbio.1001746

    Article  PubMed  PubMed Central  Google Scholar 

  122. Szekely R, Waczek F, Szabadkai I, Nemeth G, Hegymegi-Barakonyi B, Eros D, Szokol B, Pato J, Hafenbradl D, Satchell J, Saint-Joanis B, Cole ST, Orfi L, Klebl BM, Keri G (2008) A novel drug discovery concept for tuberculosis: inhibition of bacterial and host cell signalling. Immunol Lett 116(2):225–231. https://doi.org/10.1016/j.imlet.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  123. Lougheed KE, Osborne SA, Saxty B, Whalley D, Chapman T, Bouloc N, Chugh J, Nott TJ, Patel D, Spivey VL, Kettleborough CA, Bryans JS, Taylor DL, Smerdon SJ, Buxton RS (2011) Effective inhibitors of the essential kinase PknB and their potential as anti-mycobacterial agents. Tuberculosis (Edinb) 91(4):277–286. https://doi.org/10.1016/j.tube.2011.03.005

    Article  CAS  Google Scholar 

  124. Chapman TM, Bouloc N, Buxton RS, Chugh J, Lougheed KE, Osborne SA, Saxty B, Smerdon SJ, Taylor DL, Whalley D (2012) Substituted aminopyrimidine protein kinase B (PknB) inhibitors show activity against Mycobacterium tuberculosis. Bioorg Med Chem Lett 22(9):3349–3353. https://doi.org/10.1016/j.bmcl.2012.02.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang T, Bemis G, Hanzelka B, Zuccola H, Wynn M, Moody CS, Green J, Locher C, Liu A, Gao H, Xu Y, Wang S, Wang J, Bennani YL, Thomson JA, Muh U (2017) Mtb PknA/PknB dual inhibition provides selectivity advantages for inhibitor design to minimize host kinase interactions. ACS Med Chem Lett 8(12):1224–1229. https://doi.org/10.1021/acsmedchemlett.7b00239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Verma RK, Singh AK, Mohan M, Agrawal AK, Verma PR, Gupta A, Misra A (2012) Inhalable microparticles containing nitric oxide donors: saying NO to intracellular Mycobacterium tuberculosis. Mol Pharm 9(11):3183–3189. https://doi.org/10.1021/mp300269g

    Article  CAS  PubMed  Google Scholar 

  127. Su FY, Chen J, Son HN, Kelly AM, Convertine AJ, West TE, Skerrett SJ, Ratner DM, Stayton PS (2018) Polymer-augmented liposomes enhancing antibiotic delivery against intracellular infections. Biomater Sci 6(7):1976–1985. https://doi.org/10.1039/c8bm00282g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bais VS, Mohapatra B, Ahamad N, Boggaram S, Verma S, Prakash B (2018) Investigating the inhibitory potential of 2-Aminopurine metal complexes against serine/threonine protein kinases from Mycobacterium tuberculosis. Tuberculosis (Edinb) 108:47–55. https://doi.org/10.1016/j.tube.2017.10.005

    Article  CAS  Google Scholar 

  129. Abbadi BL, Rodrigues-Junior VDS, Dadda ADS, Pissinate K, Villela AD, Campos MM, Lopes LGF, Bizarro CV, Machado P, Sousa EHS, Basso LA (2018) Is IQG-607 a potential metallodrug or metallopro-drug with a defined molecular target in Mycobacterium tuberculosis? Front Microbiol 9:1–21. https://doi.org/10.3389/fmicb.2018.00880

    Article  Google Scholar 

  130. Barry NP, Sadler PJ (2013) Exploration of the medical periodic table: towards new targets. Chem Commun (Camb) 49(45):5106–5131. https://doi.org/10.1039/c3cc41143e

    Article  CAS  Google Scholar 

  131. Maia LB, Moura JJ (2015) Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 20(2):403–433. https://doi.org/10.1007/s00775-014-1234-2

    Article  CAS  PubMed  Google Scholar 

  132. Khan A, Sarkar D (2006) Identification of a respiratory-type nitrate reductase and its role for survival of Mycobacterium smegmatis in Wayne model. Microb Pathogenesis 41(2–3):90–95. https://doi.org/10.1016/j.micpath.2006.04.006

    Article  CAS  Google Scholar 

  133. Bardon C, Piola F, Haichar Fel Z, Meiffren G, Comte G, Missery B, Balby M, Poly F (2016) Identification of B-type procyanidins in Fallopia spp. involved in biological denitrification inhibition. Environ Microbiol 18(2):644–655. https://doi.org/10.1111/1462-2920.13062

    Article  CAS  PubMed  Google Scholar 

  134. Bardon C, Poly F, Piola F, Pancton M, Comte G, Meiffren G, Haichar Fel Z (2016) Mechanism of biological denitrification inhibition: procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration. FEMS Microbiol Ecol 92(5):1–11. https://doi.org/10.1093/femsec/fiw034

    Article  CAS  Google Scholar 

  135. Sarkar D (2017) Nitrite-reductase (nirb) as potential anti-tubercular target and a method to detect the severity of tuberculosis disease. India Patent, US 9,670,523 B2

  136. Cunningham-Bussel A, Bange FC, Nathan CF (2013) Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide. Microbiologyopen 2(6):901–911. https://doi.org/10.1002/mbo3.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Moreira CDD, Ramos MJRN, Fernandes PMAA (2019) Glutamine synthetase structure–catalysis relationship—recent advances and applications. Wires Comput Mol Sci 9(4):1–13. https://doi.org/10.1002/wcms.1399

    Article  CAS  Google Scholar 

  138. Harth G, Horwitz MA (1999) An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets. J Exp Med 189(9):1425–1435. https://doi.org/10.1084/jem.189.9.1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Harth G, Horwitz MA (2003) Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo. Infect Immun 71(1):456–464. https://doi.org/10.1128/Iai.71.1.456-464.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Odell LR, Nilsson MT, Gising J, Lagerlund O, Muthas D, Nordqvist A, Karlen A, Larhed M (2009) Functionalized 3-amino-imidazo[1,2-a]pyridines: a novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Bioorg Med Chem Lett 19(16):4790–4793. https://doi.org/10.1016/j.bmcl.2009.06.045

    Article  CAS  PubMed  Google Scholar 

  141. Gising J, Nilsson MT, Odell LR, Yahiaoui S, Lindh M, Iyer H, Sinha AM, Srinivasa BR, Larhed M, Mowbray SL, Karlen A (2012) Trisubstituted imidazoles as Mycobacterium tuberculosis glutamine synthetase inhibitors. J Med Chem 55(6):2894–2898. https://doi.org/10.1021/jm201212h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Couturier C, Silve S, Morales R, Pessegue B, Llopart S, Nair A, Bauer A, Scheiper B, Poverlein C, Ganzhorn A, Lagrange S, Bacque E (2015) Nanomolar inhibitors of Mycobacterium tuberculosis glutamine synthetase 1: synthesis, biological evaluation and X-ray crystallographic studies. Bioorg Med Chem Lett 25(7):1455–1459. https://doi.org/10.1016/j.bmcl.2015.02.035

    Article  CAS  PubMed  Google Scholar 

  143. Theron A, Roth RL, Hoppe H, Parkinson C, van der Westhuyzen CW, Stoychev S, Wiid I, Pietersen RD, Baker B, Kenyon CP (2017) Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform. PLoS ONE 12(10):0185068. https://doi.org/10.1371/journal.pone.0185068

    Article  CAS  Google Scholar 

  144. Mehta R, Pearson JT, Mahajan S, Nath A, Hickey MJ, Sherman DR, Atkins WM (2004) Adenylylation and catalytic properties of Mycobacterium tuberculosis glutamine synthetase expressed in Escherichia coli versus mycobacteria. J Biol Chem 279(21):22477–22482. https://doi.org/10.1074/jbc.M401652200

    Article  CAS  PubMed  Google Scholar 

  145. Credille CV, Morrison CN, Stokes RW, Dick BL, Feng Y, Sun J, Chen Y, Cohen SM (2019) SAR exploration of tight-binding inhibitors of influenza virus PA endonuclease. J Med Chem 62(21):9438–9449. https://doi.org/10.1021/acs.jmedchem.9b00747

    Article  CAS  PubMed  Google Scholar 

  146. Carcelli M, Rogolino D, Gatti A, De Luca L, Sechi M, Kumar G, White SW, Stevaert A, Naesens L (2016) N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. Sci Rep 6:1–14. https://doi.org/10.1038/srep31500

    Article  CAS  Google Scholar 

  147. Gupta P, Roy N, Garg P (2009) Docking-based 3D-QSAR study of HIV-1 integrase inhibitors. Eur J Med Chem 44(11):4276–4287. https://doi.org/10.1016/j.ejmech.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  148. Wang H, Kowalski MD, Lakdawala AS, Vogt FG, Wu L (2015) An efficient and highly diastereoselective synthesis of GSK1265744, a potent HIV integrase inhibitor. Org Lett 17(3):564–567. https://doi.org/10.1021/ol503580t

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Associate Laboratory for Green Chemistry-LAQV, which is financed by national funds from Fundacão para a Ciência e a Tecnologia, MCTES (FCT/MCTES; UID/QUI/50006/2019). We are also thankful to CNPq (PDE 204177/2018-9, EHSS 308383/2018-4, Universal 403866/2016-2, LGFL 303355/2018-2, and and ICND 307078/2017-5), CAPES (PROEX 23038.000936/2018-46), FUNCAP (PRONEX PR2 0101-00030.01.00/15 SPU Nº: 3265612/2015) and National Institute of Science and Technology on Tuberculosis (Decit/SCTIE/MS-MCT-CNPq FNDTC-CAPES-FAPERGS, grant number 421703/2017-2) for financial support. In addition, we are thankful to Dr. Marie-Alda Gilles-Gonzalez (University of Texas Southwestern Medical Center, USA) for suggestions and assistance on English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo H. S. Sousa.

Ethics declarations

Conflicts of interest

There are no conflicts to be disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, E.H.S., Diógenes, I.C.N., Lopes, L.G.F. et al. Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry. J Biol Inorg Chem 25, 685–704 (2020). https://doi.org/10.1007/s00775-020-01803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01803-1

Keywords

Navigation