Skip to main content

Advertisement

Log in

Synthesis, structure and biological evaluation of ruthenium(III) complexes of triazolopyrimidines with anticancer properties

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Six novel ruthenium(III) complexes of general formula [RuCl3(L)3] (1,3,5) and [RuCl3(H2O)(L)2] (2,4,6), where L stands for three different triazolopyrimidine-derived ligands, are reported. The compounds have been structurally characterized (IR, EPR, SCXRD), and their magnetic moments have been determined. The single-crystal X-ray diffraction study revealed a slightly distorted octahedral geometry of the Ru(III) complexes with mer configuration in 1 and 5, and fac configuration in 3. In 2 and 4, three chloride ions are in mer configuration and the two triazolopyrimidines are oriented trans mutually with the water molecule playing the role of the sixth ligand. All complexes have been thoroughly screened for their in vitro cytotoxicity against human breast cancer cell line MCF-7, human cervical cancer cell line HeLa, and L929 murine fibroblast cells, uncovering among others that the most lipophilic complexes 5 and 6, containing the bulky ligand dptp (5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine), display high cytotoxic activity against MCF-7, and HeLa cells. Moreover, it was also revealed that during the interaction of the complexes 16 with the cancer MCF-7 cell line, reactive oxygen species are released intracellularly, which could indicate that they are involved in cell apoptosis. Furthermore, extensive studies have been carried out to reveal the mechanism by which complexes 16 interact with DNA, albumin, and apotransferrin. The biological studies were complemented by detailed kinetic studies of the hydrolysis of the complexes in the pH range 5–8, to determine the stability of the complexes in solution.

Graphic abstract

Six novel ruthenium(III) complexes with triazolopyrimidine derivatives demonstrated the potential for use as anticancer agents by maintaining the toxic effect on MCF-7 and HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zamble DB, Lippard SJ (1995) Trends Biochem Sci 20:435–439

    Article  CAS  PubMed  Google Scholar 

  2. Sasada T, Iwata S, Sato N, Kitaoka Y, Hirota K, Nakamura K, Nishiyama A, Taniguchi Y, Takabayashi A, Yodoi J (1996) J Clin Invest 97:2268–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shen DW, Pouliot LM, Hall MD, Gottesman MM (2012) Pharmacol Rev 64(3):706–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antonarakis ES, Emadi A (2010) Cancer Chemother Pharmacol 66:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sava G, Zorzet S, Giraldi T, Mestroni G, Zassinovich G (1984) Eur J Cancer Clin Oncol 20(6):841–847

    Article  CAS  PubMed  Google Scholar 

  6. Sava G, Bergamo A (2000) Int J Oncol 17(2):353–365

    CAS  PubMed  Google Scholar 

  7. Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA, Keppler BK (2006) Dalton Trans 14:1796–1802

    Article  CAS  Google Scholar 

  8. Reedijk J (2003) Proc Natl Acad Sci USA 100(7):3611–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99(9):2511–2534

    Article  CAS  PubMed  Google Scholar 

  10. Gagliardi R, Sava G, Pacor S, Mestroni G, Alessio E (1994) Clin Exp Metastasis 12(2):93–100

    Article  CAS  PubMed  Google Scholar 

  11. Bergamo A, Masi A, Dyson PJ, Sava G (2008) Int J Oncol 33(6):1281–1289

    CAS  PubMed  Google Scholar 

  12. Schäfer S, Ott I, Gust R, Sheldrick WS (2007) Eur J Inorg Chem 19:3034–3046

    Article  CAS  Google Scholar 

  13. Pluim D, van Waardenburg RC, Beijnen JH, Schellens JH (2004) Cancer Chemother Pharmacol 54(1):71–78

    Article  CAS  PubMed  Google Scholar 

  14. Kapitza S, Jakupec MA, Uhl M, Keppler BK, Marian B (2005) Cancer Lett 226(2):115–121

    Article  CAS  PubMed  Google Scholar 

  15. Chen H, Parkinson JA, Morris RE, Sadler PJ (2003) J Am Chem Soc 125(1):173–186

    Article  CAS  PubMed  Google Scholar 

  16. Kostova I (2006) Curr Med Chem 13(9):1085–1107

    Article  CAS  PubMed  Google Scholar 

  17. Sava G, Alessio E, Bergamo A, Mestroni G (1999) Top Biol Inorg Chem 1:143–169

    CAS  Google Scholar 

  18. Pieper T, Borsky K, Keppler BK (1999) Top Biol Inorg Chem 1:171–199

    CAS  Google Scholar 

  19. Sava G, Pacor S, Mestroni G, Alessio E (1992) Clin Exp Metastasis 10(4):273–280

    Article  CAS  PubMed  Google Scholar 

  20. Sava G, Pacor S, Bergamo A, Cocchietto M, Mestroni G, Alessio E (1995) Chem Biol Interact 95(1–2):109–126

    Article  CAS  PubMed  Google Scholar 

  21. Jakupec MA, Arion VB, Kapitza S, Reisner E, Eichinger A, Pongratz M, Marian B, von Keyserlingk Graf N, Keppler BK (2005) Int J Clin Pharmacol Ther 43(12):595–596

    Article  CAS  PubMed  Google Scholar 

  22. Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson PJ, Keppler BK (2008) Chem Biodivers 5(10):2140–2155

    Article  CAS  PubMed  Google Scholar 

  23. Łakomska I, Fandzloch M (2016) Coord Chem Rev 327–328:221–241

    Article  CAS  Google Scholar 

  24. Salas JM, Romero MA, Purificación Sánchez M, Quirós M (1999) Coord Chem Rev 193–195:1119–1142

    Article  Google Scholar 

  25. Pyatakov DA, Sokolov AN, Astakhov AV, Chernenko AY, Fakhrutdinov AN, Rybakov VB, Chernyshev VV, Chernyshev VM (2015) J Org Chem 80(21):10694–10709 (references therein)

    Article  CAS  PubMed  Google Scholar 

  26. Lauria A, Abbate I, Patella C, Martorana A, Dattolo G, Almerico AM (2013) Eur J Med Chem 62:416–424

    Article  CAS  PubMed  Google Scholar 

  27. Said SA, El-Galil A, Amr E, Sabry NM, Abdalla MM (2009) Eur J Med Chem 44:4787–4792

    Article  CAS  PubMed  Google Scholar 

  28. Ganesana SM, Morriseya JM, Kea H, Paintera HJ, Laroiyaa K, Phillips MA, Rathod PK, Mathera MW, Vaidya AB (2011) Mol Biochem Parasitol 177:29–34

    Article  CAS  Google Scholar 

  29. Trianaa MAH, Huynhb M-H, Garavitoa MF, Foxc BA, Bzikc DJ, Carruthersb VB, Löfflerd M, Zimmermanna BH (2012) Mol Biochem Parasitol 184:71–81

    Article  CAS  Google Scholar 

  30. Ojha PK, Roy K (2010) Eur J Med Chem 45:4645–4656

    Article  CAS  PubMed  Google Scholar 

  31. Da Silva ER, Boechat N, Pinheiro LCS, Bastos MM, Costa CCP, Bartholomeu JC, da Costa TH (2015) Chem Biol Drug Des 5:969–978

    Article  CAS  Google Scholar 

  32. Caballero AB, Salas JM, Sánchez-Moreno M (2014) In: Claborn DM (ed) Leishmaniasis—trends in epidemiology, diagnosis and treatment. IntechOpen, London

    Google Scholar 

  33. El-Gendy MM, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008) J Antibiot 61:149–157

    Article  CAS  Google Scholar 

  34. Chen Q, Zhu X-L, Jiang L-L, Liu Z-M, Yang GF (2008) Eur J Med Chem 43:595–603

    Article  CAS  PubMed  Google Scholar 

  35. Massari S, Nannetti G, Desantis J, Muratore G, Sabatini S, Manfroni G, Mercorelli B, Cecchetti V, Palù G, Cruciani G, Loregian A, Goracci L, Tabarrini O (2015) J Med Chem 58:3830–3842

    Article  CAS  PubMed  Google Scholar 

  36. Huang B, Li C, Chen W, Liu T, Yu M, Fu L, Sun Y, Liu H, De Clercq E, Pannecouque C, Balzarini J, Zhan P, Liu X (2015) Eur J Med Chem 92:754–765

    Article  CAS  PubMed  Google Scholar 

  37. Brigance RP, Meng W, Fura A, Harrity T, Wang A, Zahler R, Kirby MS, Hamann LG (2010) Bioorg Med Chem Lett 20:4395–4398

    Article  CAS  PubMed  Google Scholar 

  38. Cornec AS, James MJ, Kovalevich J, Trojanowski JQ, Lee VMY, Smith AB III, Ballatore C, Brunden KR (2015) Bioorg Med Chem Lett 25:4980–4982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Faizi M, Dabirian S, Tajali H, Ahmadi F, Zavareh ER, Shahhosseini S, Tabatabai SA (2015) Bioorg Med Chem 23:480–487

    Article  CAS  PubMed  Google Scholar 

  40. Saito T, Obitsu T, Minamoto C, Sugiura T, Matsumura N, Ueno S, Kishi A, Katsumata S, Nakai H, Toda M (2011) Bioorg Med Chem 19:5955–5966

    Article  CAS  PubMed  Google Scholar 

  41. Ohnishi H, Yamaguchi K, Shimada S, Suzuki Y, Kumagai A (1981) Life Sci 28:1641–1646

    Article  CAS  PubMed  Google Scholar 

  42. Zhou L, Schandené L, Mordvinov VA, Chatelain P, Pradier O, Goldman M, Stordeur P (2004) Int Immunopharmacol 4:863–871

    Article  CAS  PubMed  Google Scholar 

  43. Rodríguez-Torres M, Yoshida EM, Marcellin P, Srinivasan S, Purohit VS, Wang C, Hammond JL (2014) Ann Hepatol 13:364–375

    Article  PubMed  Google Scholar 

  44. Łakomska I, Fandzloch M, Muzioł T, Lis T, Jezierska J (2013) Dalton Trans 42:6219–6226

    Article  PubMed  CAS  Google Scholar 

  45. Velders AH, Pazderski L, Ugozzoli F, Biagini-Cingi M, Manotti-Lanfredi AM, Haasnoot JG, Reedijk J (1998) Inorg Chim Acta 273:259–265

    Article  CAS  Google Scholar 

  46. Bülow C, Haas K (1909) Berichte 42:4638–4644

    Google Scholar 

  47. Grodzicki A, Szłyk E, Pazderski L, Goliński A (1996) Magn Res Chem 34:725–727

    Article  CAS  Google Scholar 

  48. Günay E, Mutikainen I, Turpeinen U, van Albada GA, Haasnoot JG, Reedijk J (2010) J Chem Crystallogr 40:1006–1010

    Article  CAS  Google Scholar 

  49. Balkaran JM, van Bezouw SCP, van Rruchem J, Verasdonck J, Verkerk PC, Volbeda AG, Mutikainen I, Turpeinen U, van Albada GA, Gamez P, Balkaran JM, van Bezouw SCP, van Rruchem J, Verasdonck J, Verkerk PC, Volbeda AG, Mutikainen I, Turpeinen U, van Albada GA, Gamez P, Haasnoot JG, Reedijk J (2009) Inorg Chim Acta 362:861–868

    Article  CAS  Google Scholar 

  50. Rigaku Oxford Diffraction (2015) CrysAlisPro Software System version 1.171. 38.43d. Rigaku Corporation, Oxford

    Google Scholar 

  51. SMART (Version 5.628) (2002) Data Collection Software. Bruker Analytical X-ray Instruments Inc, Madison

    Google Scholar 

  52. SAINT+ (Version 6.45) (2003) Data Reduction Software. Bruker Analytical X-ray Instruments Inc, Madison

    Google Scholar 

  53. Sheldrick GM SADABS (version 2.03) (2002) Program for empirical absorption correction of area detector data. University of Göttingen, Göttingen

    Google Scholar 

  54. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  55. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Van De Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470. https://doi.org/10.1107/s0021889807067908

    Article  CAS  Google Scholar 

  56. Persistence of Vision Pty. Ltd. (2004) Persistence of Vision (TM) Raytracer. Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia. http://www.povray.org/

  57. Albert A (1979) Selective toxicity the physico-chemical basis of therapy. Chapman and Hall, London, pp 662–664

    Google Scholar 

  58. Mestroni G, Alessio E, Sava G (1998) New salts of anionic complexes of Ru(III) as antimetastatic and antineoplastic agents. International Patent WO 98/00431

  59. Muzioł T, Wiśniewska J (2015) CSD Communication

  60. Velders AH, Ugozzoli F, Biagini-Cingi M, Manotti-Lanfredi AM, Haasnoot JG, Reedijk J (1999) Eur J Inorg Chem 213–215

  61. Łakomska I, Stefańczak K, Fandzloch M, Sitkowski J, Filip-Psurska B, Wojtczak A (2016) There is one crystal structure of Ru(II) with ibmtp, namely: dichloro-(7-isobutyl-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine)-(η6-1-isopropyl-4-methylbenzene)-ruthenium (TUZROX). Polyhedron 109:33–39

    Article  CAS  Google Scholar 

  62. Medhi K, Agarwala U (1980) Inorg Chem 19:1381–1384

    Article  CAS  Google Scholar 

  63. LaChance-Galang KJ, Doan PE, Clarke MJ, Rae U, Yamano A, Hoffman BM (1995) J Am Chem Soc 117:3529–3538

    Article  CAS  Google Scholar 

  64. Bleaney B, O’Brien MCM (1956) Proc Phys Soc Lond 69B:1216–1230

    Article  CAS  Google Scholar 

  65. McGarvey BR (1998) Quim Nova 21:206–213

    Article  CAS  Google Scholar 

  66. McGarvey BR (1998) Coord Chem Rev 170:5–92

    Article  Google Scholar 

  67. Fandzloch M, Méndez Arriaga JM, Sánchez-Moreno M, Wojtczak A, Sitkowski J, Wiśniewska J, Salas JM, Łakomska I (2017) J Inorg Biochem 176:144–155

    Article  CAS  PubMed  Google Scholar 

  68. Moreno V, Lorenzo J, Aviles FX, Garcia MH, Ribeiro JP, Morais TS, Florindo P, Robalo MP (2010) Bioinorg Chem Appl 1–11

  69. Fandzloch M (2015) PhD thesis/unpublished

  70. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

  71. Arai M, Shibata Y, Pugdee K, Abiko Y, Ogata Y (2007) IUBMB Life 59:27–33

    Article  CAS  PubMed  Google Scholar 

  72. Cao W, Zheng W, Chen T (2015) Sci Rep 5:1–11

    Google Scholar 

  73. Luo Z, Yu L, Yang F, Zhao Z, Yu B, Lai H, Wong KH, Ngai SM, Zheng W, Chen T (2014) Metallomics 6:1480–1490

    Article  CAS  PubMed  Google Scholar 

  74. Vijayalakshmi R, Kanthimathi M, Parthsarathi R, Nair BU (2006) Bioorg Med Chem 14:3300–3306

    Article  CAS  PubMed  Google Scholar 

  75. Messori L, Orioli P, Vullo D, Alessio E, Iengo E (2000) Eur J Biochem 267:1206–1213

    Article  CAS  PubMed  Google Scholar 

  76. Sun H, Li H, Sadler PJ (1999) Chem Rev 99:2817–2842

    Article  CAS  PubMed  Google Scholar 

  77. Young SP, Bomford A, Williams R (1984) Biochem J 219:505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lincoln P, Tuite E, Norden B (1997) J Am Chem Soc 119:1454–1455

    Article  CAS  Google Scholar 

  79. Shahabadi N, Kashanian S, Darabi F (2010) J Med Chem 45:4239–4245

    Article  CAS  Google Scholar 

  80. Martínez A, Suárez J, Shand T, Magliozzo RS, Sánchez-Delgado RA (2011) J Inorg Biochem 105:39–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Science Center (NCN) Poland through Grant Etiuda no. 2013/08/T/ST5/00391 (to M.F.) is gratefully acknowledged. M. F. is thankful to J. Masternak, DSc PhD from the Jan Kochanowski University in Kielce for magnetic measurements and Prof. Juan M. Salas from the University of Granada for support and advice during the internship. His extraordinary personality and great mentoring will forever remain in my memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena Fandzloch.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2019_1743_MOESM1_ESM.doc

Supplementary material 1 (DOC 1487 kb) [Table S1 presented selected bond lengths and angles for 14, representation (Fig. S1) and crystal data for 5, Fig. S2 and Fig. S3 with concentration-dependent effect of the ruthenium complexes 16 on the viability of L929 fibroblasts and MCF-7 cells or HeLa in comparison to both cell lines stimulated with cisplatin, and Fig. S4 presented a summary of the concentration-dependent impact of ruthenium complexes 16, cisplatin and NAMI-A on cell viability and intracellular ROS production]. See https://doi.org/10.1039/x0xx00000x

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fandzloch, M., Dobrzańska, L., Jędrzejewski, T. et al. Synthesis, structure and biological evaluation of ruthenium(III) complexes of triazolopyrimidines with anticancer properties. J Biol Inorg Chem 25, 109–124 (2020). https://doi.org/10.1007/s00775-019-01743-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01743-5

Keywords

Navigation