Skip to main content
Log in

Generation and characterization of functional phosphoserine-incorporated neuronal nitric oxide synthase holoenzyme

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Phosphorylation is an important pathway for the regulation of nitric oxide synthase (NOS) at the posttranslational level. However, the molecular underpinnings of NOS regulation by phosphorylations remain unclear to date, mainly because of the problems in making a good amount of active phospho-NOS proteins. Herein, we have established a system in which recombinant rat nNOS holoprotein can be produced with site-specific incorporation of phosphoserine (pSer) at residue 1412, using a specialized bacterial host strain for pSer incorporation. The pSer1412 nNOS protein demonstrates UV–Vis, far-UV CD and fluorescence spectral properties that are identical to those of nNOS overexpressed in other bacterial strains. The protein is also functional, possessing normal NO production and NADPH oxidation activities in the presence of abundant substrate l-Arg. Conversely, the rate of FMN–heme interdomain electron transfer (IET) in pSer1412 nNOS is considerably lower than that of wild-type (wt) nNOS, while the phosphomimetic S1142E mutant possesses similar electron transfer kinetics to that of wt. The successful incorporation and high yield of pSer1412 into rat nNOS and the significant change in the IET kinetics upon the phosphorylation demonstrate a highly useful method for incorporating native phosphorylation sites as a substantial improvement to commonly used phosphomimetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Förstermann U, Sessa WC (2012) Eur Heart J 33:829–837

    Article  CAS  PubMed  Google Scholar 

  2. Feng C (2012) Coord Chem Rev 256:393–411

    Article  CAS  PubMed  Google Scholar 

  3. Alderton WK, Cooper CE, Knowles RG (2001) Biochem J 357:593–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fulton DJR (2016) In: Raouf AK (ed) Adv pharmacol. Academic Press, pp 29-64

  5. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Nature 399:597–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen CA, Druhan LJ, Varadharaj S, Chen YR, Zweier JL (2008) J Biol Chem 283:27038–27047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haque MM, Ray SS, Stuehr DJ (2016) J Biol Chem 291:23047–23057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tran QK, Leonard J, Black DJ, Nadeau OW, Boulatnikov IG, Persechini A (2009) J Biol Chem 284:11892–11899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adak S, Santolini J, Tikunova S, Wang Q, Johnson JD, Stuehr DJ (2001) J Biol Chem 276:1244–1252

    Article  CAS  PubMed  Google Scholar 

  10. McCabe TJ, Fulton D, Roman LJ, Sessa WC (2000) J Biol Chem 275:6123–6128

    Article  CAS  PubMed  Google Scholar 

  11. Xie Y, Jiang Y, Ben-Amotz D (2005) Anal Biochem 343:223–230

    Article  CAS  PubMed  Google Scholar 

  12. Mount PF, Kemp BE, Power DA (2007) J Mol Cell Cardiol 42:271–279

    Article  CAS  PubMed  Google Scholar 

  13. Wu PR, Chen BR, Hsieh CC, Lin WC, Wu KK, Hwu Y, Chen PF (2014) Biosci Rep. https://doi.org/10.1042/bsr20140079

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pirman NL, Barber KW, Aerni HR, Ma NJ, Haimovich AD, Rogulina S, Isaacs FJ, Rinehart J (2015) Nat Commun 6:8130

    Article  PubMed  Google Scholar 

  15. Rameau GA, Tukey DS, Garcin-Hosfield ED, Titcombe RF, Misra C, Khatri L, Getzoff ED, Ziff EB (2007) J Neurosci 27:3445–3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Panda SP, Li W, Venkatakrishnan P, Chen L, Astashkin AV, Masters BSS, Feng C, Roman LJ (2013) FEBS Lett 587:3973–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Veldhoven PP, Mannaerts GP (1987) Anal Biochem 161:45–48

    Article  PubMed  Google Scholar 

  18. Carter SG, Karl DW (1982) J Biochem Biophys Methods 7:7–13

    Article  CAS  PubMed  Google Scholar 

  19. Chen GC, Yang JT (1977) Anal Lett 10:1195–1207

    Article  CAS  Google Scholar 

  20. Feng CJ, Tollin G, Hazzard JT, Nahm NJ, Guillemette JG, Salerno JC, Ghosh DK (2007) J Am Chem Soc 129:5621–5629

    Article  CAS  PubMed  Google Scholar 

  21. Feng CJ, Roman LJ, Hazzard JT, Ghosh DK, Tollin G, Masters BSS (2008) FEBS Lett 582:2768–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rogerson DT, Sachdeva A, Wang K, Haq T, Kazlauskaite A, Hancock SM, Huguenin-Dezot N, Muqit MMK, Fry AM, Bayliss R, Chin JW (2015) Nat Chem Biol 11:496–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo X, Niemi NM, Hutchins PD, Condon SGF, Jochem A, Ulbrich A, Higbee AJ, Russell JD, Senes A, Coon JJ, Pagliarini DJ (2017) Cell Reports 18:307–313

    Article  CAS  PubMed  Google Scholar 

  24. Lv Z, Rickman KA, Yuan L, Williams K, Selvam SP, Woosley AN, Howe PH, Ogretmen B, Smogorzewska A, Olsen SK (2017) Mol Cell 65:699–714.e696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Steinfeld JB, Aerni HR, Rogulina S, Liu Y, Rinehart J (2014) ACS Chem Biol 9:1104–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shrestha A, Hamilton G, O’Neill E, Knapp S, Elkins JM (2012) Protein Expr Purif 81:136–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Solari FA, Dell’Aica M, Sickmann A, Zahedi RP (2015) Mol BioSyst 11:1487–1493

    Article  CAS  PubMed  Google Scholar 

  28. Cabrera-Pastor A, Llansola M, Felipo V (2016) ACS Chemical Neuroscience 7:1753–1759

    Article  CAS  PubMed  Google Scholar 

  29. Garbincius JF, Michele DE (2015) Proc Natl Acad Sci 112:13663–13668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brüne B, Lapetina EG (1991) Biochem Biophys Res Commun 181:921–926

    Article  PubMed  Google Scholar 

  31. Bredt DS, Ferris CD, Snyder SH (1992) J Biol Chem 267:10976–10981

    CAS  PubMed  Google Scholar 

  32. Klatt P, Schmidt K, Lehner D, Glatter O, Bächinger HP, Mayer B (1995) The EMBO journal 14:3687–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Richards MK, Clague MJ, Marletta MA (1996) Biochemistry 35:7772–7780

    Article  CAS  PubMed  Google Scholar 

  34. Adak S, Ghosh S, Abu-Soud HM, Stuehr DJ (1999) J Biol Chem 274:22313–22320

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Zheng H, Wang W, Miao Y, Sheng Y, Feng C (2018) FEBS Lett 592:2425–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li J, Zheng H, Feng C (2018) Front Biosci (Landmark edition) 23:1803–1821

    Article  CAS  Google Scholar 

  37. Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) J Biol Chem 279:36167–36170

    Article  CAS  PubMed  Google Scholar 

  38. Arnett DC, Persechini A, Tran Q-K, Black DJ, Johnson CK (2015) FEBS Lett 589:1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Katakam PV, Snipes JA, Steed MM, Busija DW (2012) J Cereb Blood Flow Metab 32:792–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Takayasu M (2013) Neurochem Int 63:269–274

    Article  CAS  PubMed  Google Scholar 

  41. Astashkin AV, Li J, Zheng H, Miao Y, Feng C (2018) J Inorg Biochem 184:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Astashkin AV, Feng C (2015) J Phys Chem A 119:11066–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hanson QM, Carley JR, Gilbreath TJ, Smith BC, Underbakke ES (2018) J Mol Biol 430:935–947

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Charles Melancon for helpful discussions. This work was supported by the National Institutes of Health (Grant no. GM-081811 to CF, GM-057378 to MLK and GM-081568 to LR). Mass spectrometry data were acquired by the University of Ari-zona Analytical and Biological Mass Spectrometry Facility supported by NIH/NCI Grant CA023074 to the University of Arizona Cancer Center and by the BIO5 Institute of the University of Arizona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjian Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., He, J., Li, J. et al. Generation and characterization of functional phosphoserine-incorporated neuronal nitric oxide synthase holoenzyme. J Biol Inorg Chem 24, 1–9 (2019). https://doi.org/10.1007/s00775-018-1621-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1621-1

Keywords

Navigation