Skip to main content
Log in

The Asp99–Arg188 salt bridge of the Pseudomonas aeruginosa HemO is critical in allowing conformational flexibility during catalysis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 09 October 2018

This article has been updated

Abstract

The P. aeruginosa iron-regulated heme oxygenase (HemO) is required within the host for the utilization of heme as an iron source. As iron is essential for survival and virulence, HemO represents a novel antimicrobial target. We recently characterized small molecule inhibitors that bind to an allosteric site distant from the heme pocket, and further proposed binding at this site disrupts a nearby salt bridge between D99 and R188. Herein, through a combination of site-directed mutagenesis and hydrogen–deuterium exchange mass spectrometry (HDX-MS), we determined that the disruption of the D99–R188 salt bridge leads to significant decrease in conformational flexibility within the distal and proximal helices that form the heme-binding site. The RR spectra of the resting state Fe(III) and reduced Fe(II)-deoxy heme-HemO D99A, R188A and D99/R188A complexes are virtually identical to those of wild-type HemO, indicating no significant change in the heme environment. Furthermore, mutation of D99 or R188 leads to a modest decrease in the stability of the Fe(II)-O2 heme complex. Despite this slight difference in Fe(II)-O2 stability, we observe complete loss of enzymatic activity. We conclude the loss of activity is a result of decreased conformational flexibility in helices previously shown to be critical in accommodating variation in the distal ligand and the resulting chemical intermediates generated during catalysis. Furthermore, this newly identified allosteric binding site on HemO represents a novel alternative drug-design strategy to that of competitive inhibition at the active site or via direct coordination of ligands to the heme iron.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 09 October 2018

    In the original publication, fifth author’s name was incorrectly published as Pierre Moenne-Loccoz.

Abbreviations

CD:

Circular dichroism

HDX-MS:

Hydrogen–deuterium exchange mass spectrometry

RR:

Resonance Raman spectroscopy

DM:

Double mutant

BVIX:

Biliverdin

HemO:

Pseudomonas aeruginosa iron-regulated heme oxygenase

HemOα:

Biliverdin IXα selective mutant of P. aeruginosa iron-regulated heme oxygenase

HEPES:

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HO:

Heme oxygenase

HO-1:

Human heme oxygenase 1

HO-2:

Human heme oxygenase 2

HDX-MS:

Hydrogen–deuterium exchange mass spectrometry

IFP:

Infrared fluorescent protein

IPTG:

Isopropyl β-d-thiogalactopyranoside

IsdG:

Iron-regulated surface-determinant protein G

IsdI:

Iron-regulated surface-determinant protein I

LB:

Luria–Bertani

MhuD:

Mycobacterium heme utilization degrader

Ni-NTA:

Nickel–nitriloacetic acid

PMSF:

Phenylmethanesulfonyl fluoride

rHO-1:

Rat heme oxygenase 1

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

WT:

Wild type

References

  1. Wilks A, Black SM, Miller WL, Ortiz de Montellano PR (1995) Biochemistry 34:4421–4427

    Article  CAS  Google Scholar 

  2. Wilks A, Ortiz de Montellano PR (1993) J Biol Chem 268:22357–22362

    CAS  PubMed  Google Scholar 

  3. Yoshida T, Kikuchi G (1977) J Biochem (Tokyo) 81:265–268

    Article  CAS  Google Scholar 

  4. Yoshida T, Kikuchi G (1979) J Biol Chem 254:4487–4491

    CAS  PubMed  Google Scholar 

  5. Yoshida T, Takahashi S, Kikuchi G (1974) J Biochem (Tokyo) 75:1187–1191

    Article  CAS  Google Scholar 

  6. Yoshinaga T, Sassa S, Kappas A (1982) J Biol Chem 257:7778–7785

    CAS  PubMed  Google Scholar 

  7. Beale SI, Cornejo J (1984) Arch Biochem Biophys 235:371–384

    Article  CAS  Google Scholar 

  8. Cornejo J, Willows RD, Beale SI (1998) Plant J Cell Mol Biol 15:99–107

    Article  CAS  Google Scholar 

  9. Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I (2001) J Bacteriol 183:6394–6403

    Article  CAS  Google Scholar 

  10. Wilks A, Schmitt MP (1998) J Biol Chem 273:837–841

    Article  CAS  Google Scholar 

  11. Zhu W, Wilks A, Stojiljkovic I (2000) J Bacteriol 182:6783–6790

    Article  CAS  Google Scholar 

  12. Wegele R, Tasler R, Zeng Y, Rivera M, Frankenberg-Dinkel N (2004) J Biol Chem 279:45791–45802

    Article  CAS  Google Scholar 

  13. Poss KD, Tonegawa S (1997) Proc Natl Acad Sci USA 94:10919–10924

    Article  CAS  Google Scholar 

  14. Poss KD, Tonegawa S (1997) Proc Natl Acad Sci USA 94:10925–10930

    Article  CAS  Google Scholar 

  15. Dennery PA (2014) Antioxid Redox Signal 20:1743–1753

    Article  CAS  Google Scholar 

  16. Davis SJ, Vener AV, Vierstra RD (1999) Science 286:2517–2520

    Article  CAS  Google Scholar 

  17. Matsui T, Nambu S, Ono Y, Goulding CW, Tsumoto K, Ikeda-Saito M (2013) Biochemistry 52:3025–3027

    Article  CAS  Google Scholar 

  18. Nambu S, Matsui T, Goulding CW, Takahashi S, Ikeda-Saito M (2013) J Biol Chem 288:10101–10109

    Article  CAS  Google Scholar 

  19. Skaar EP, Gaspar AH, Schneewind O (2004) J Biol Chem 279:436–443

    Article  CAS  Google Scholar 

  20. Schuller DJ, Zhu W, Stojiljkovic I, Wilks A, Poulos TL (2001) Biochemistry 40:11552–11558

    Article  CAS  Google Scholar 

  21. Friedman J, Lad L, Li H, Wilks A, Poulos TL (2004) Biochemistry 43:5239–5245

    Article  CAS  Google Scholar 

  22. Davydov R, Kofman V, Fujii H, Yoshida T, Ikeda-Saito M, Hoffman BM (2002) J Am Chem Soc 124:1798–1808

    Article  CAS  Google Scholar 

  23. Davydov R, Matsui T, Fujii H, Ikeda-Saito M, Hoffman BM (2003) J Am Chem Soc 125:16208–16209

    Article  CAS  Google Scholar 

  24. Davydov RM, Yoshida T, Ikeda-Saito M, Hoffman BM (1999) J Am Chem Soc 121:10656–10657

    Article  CAS  Google Scholar 

  25. Hernandez G, Wilks A, Paolesse R, Smith KM, Ortiz de Montellano PR, La Mar GN (1994) Biochemistry 33:6631–6641

    Article  CAS  Google Scholar 

  26. Liu Y, Moenne-Loccoz P, Loehr TM, Ortiz de Montellano PR (1997) J Biol Chem 272:6909–6917

    Article  CAS  Google Scholar 

  27. Liu Y, Ortiz de Montellano PR (2000) J Biol Chem 275:5297–5307

    Article  CAS  Google Scholar 

  28. Sun J, Wilks A, Ortiz de Montellano PR, Loehr TM (1993) Biochemistry 32:14151–14157

    Article  CAS  Google Scholar 

  29. Takahashi S, Ishikawa K, Takeuchi E, Ikeda-Saito M, Yoshida T, Rousseau DL (1995) J Am Chem Soc 117:6002–6006

    Article  CAS  Google Scholar 

  30. Takahashi S, Matera KM, Fujii H, Zhou H, Ishikawa K, Yoshida T, Ikeda-Saito M, Rousseau DL (1997) Biochemistry 36:1402–1410

    Article  CAS  Google Scholar 

  31. Wilks A, Torpey J, Ortiz de Montellano PR (1994) J Biol Chem 269:29553–29556

    CAS  PubMed  Google Scholar 

  32. Unno M, Matsui T, Ikeda-Saito M (2012) J Inorg Biochem 113:102–109

    Article  CAS  Google Scholar 

  33. Lai W, Chen H, Matsui T, Omori K, Unno M, Ikeda-Saito M, Shaik S (2010) J Am Chem Soc 132:12960–12970

    Article  CAS  Google Scholar 

  34. Lad L, Ortiz de Montellano PR, Poulos TL (2004) J Inorg Biochem 98:1686–1695

    Article  CAS  Google Scholar 

  35. Lad L, Friedman J, Li H, Bhaskar B, Ortiz de Montellano PR, Poulos TL (2004) Biochemistry 43:3793–3801

    Article  CAS  Google Scholar 

  36. Schuller DJ, Wilks A, Ortiz de Montellano PR, Poulos TL (1999) Nat Struct Biol 6:860–867

    Article  CAS  Google Scholar 

  37. Matsui T, Furukawa M, Unno M, Tomita T, Ikeda-Saito M (2004) J Biol Chem 280:2981–2989

    Article  Google Scholar 

  38. Liu Y, Lightning LK, Huang H, Moenne-Loccoz P, Schuller DJ, Poulos TL, Loehr TM, de Montellano PRO (2000) J Biol Chem 275:34501–34507

    Article  CAS  Google Scholar 

  39. Lightning LK, Huang H, Moenne-Loccoz P, Loehr TM, Schuller DJ, Poulos TL, de Montellano PR (2001) J Biol Chem 276:10612–10619

    Article  CAS  Google Scholar 

  40. Rodriguez JC, Wilks A, Rivera M (2006) Biochemistry 45:4578–4592

    Article  CAS  Google Scholar 

  41. Rodriguez JC, Zeng Y, Wilks A, Rivera M (2007) J Am Chem Soc 129:11730–11742

    Article  CAS  Google Scholar 

  42. Hom K, Heinzl GA, Eakanunkul S, Lopes PE, Xue F, Mackerell AD Jr, Wilks A (2013) J Med Chem 56:2097-he

    Article  Google Scholar 

  43. Furci LM, Lopes P, Eakanunkul S, Zhong S, MacKerell AD Jr, Wilks A (2007) J Med Chem 50:3804–3813

    Article  CAS  Google Scholar 

  44. Heinzl GA, Huang W, Yu W, Giardina BJ, Zhou Y, MacKerell AD Jr, Wilks A, Xue F (2016) J Med Chem 59:6929–6942

    Article  CAS  Google Scholar 

  45. Raman EP, Yu W, Lakkaraju SK, MacKerell AD Jr (2013) J Chem Inf Model 53:3384–3398

    Article  CAS  Google Scholar 

  46. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) J Bacteriol 177:4121–4130

    Article  CAS  Google Scholar 

  47. Fuhrop JH, Smith KM (eds) (1975) Porphyrins and metalloporphyrins. Elsevier, Amsterdam, pp 804–807

    Google Scholar 

  48. Wang A, Zeng Y, Han H, Weeratunga S, Morgan BN, Moenne-Loccoz P, Schonbrunn E, Rivera M (2007) Biochemistry 46:12198–12211

    Article  CAS  Google Scholar 

  49. Avila L, Huang HW, Damaso CO, Lu S, Moenne-Loccoz P, Rivera M (2003) J Am Chem Soc 125:4103–4110

    Article  CAS  Google Scholar 

  50. Rodriguez JC, Rivera M (1998) Biochemistry 37:13082–13090

    Article  CAS  Google Scholar 

  51. Damaso CO, Bunce RA, Barybin MV, Wilks A, Rivera M (2005) J Am Chem Soc 127:17582–17583

    Article  CAS  Google Scholar 

  52. Shu X, Royant A, Lin MZ, Aguilera TA, Lev-Ram V, Steinbach PA, Tsien RY (2009) Science 324:804–807

    Article  Google Scholar 

  53. Filonov GS, Piatkevich KD, Ting LM, Zhang J, Kim K, Verkhusha VV (2011) Nat Biotechnol 29:757–761

    Article  CAS  Google Scholar 

  54. Sigala PA, Crowley JR, Hsieh S, Henderson JP, Goldberg DE (2012) J Biol Chem 287:37793–37807

    Article  CAS  Google Scholar 

  55. Mourino S, Giardina BJ, Reyes-Caballero H, Wilks A (2016) J Biol Chem 291:20503–20515

    Article  CAS  Google Scholar 

  56. Barker KD, Barkovits K, Wilks A (2012) J Biol Chem 287:18342–18350

    Article  CAS  Google Scholar 

  57. O’Neill MJ, Wilks A (2013) ACS Chem Biol 8:1794–1802

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bennett Giardina for technical advice and assistance with the IFP in cell activity assays.

Funding

This research was funded in part by pre-doctoral fellowships from the ACS Division of Medicinal Chemistry and the American Foundation for Pharmaceutical Education to Geoffrey Heinzl; NIH Grant T32GM066706; and NIH Grant AI102883 to Angela Wilks.

Author information

Authors and Affiliations

Authors

Contributions

GH generated, purified and characterized the D99 and R188 mutants in the WT and HemOα background. WH performed all of the HDX-MS experiments. ER performed the in vitro activity assays. PML performed and interpreted the resonance Raman experiments. GH, WH, AW and PML wrote the manuscript. All authors contributed to final editing of the manuscript and have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Angela Wilks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinzl, G.A., Huang, W., Robinson, E. et al. The Asp99–Arg188 salt bridge of the Pseudomonas aeruginosa HemO is critical in allowing conformational flexibility during catalysis. J Biol Inorg Chem 23, 1057–1070 (2018). https://doi.org/10.1007/s00775-018-1609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1609-x

Keywords

Navigation