Skip to main content
Log in

Crystal structure of VnfH, the iron protein component of vanadium nitrogenase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nitrogenases catalyze the biological fixation of inert N2 into bioavailable ammonium. They are bipartite systems consisting of the catalytic dinitrogenase and a complementary reductase, the Fe protein that is also the site where ATP is hydrolyzed to drive the reaction forward. Three different subclasses of dinitrogenases are known, employing either molybdenum, vanadium or only iron at their active site cofactor. Although in all these classes the mode and mechanism of interaction with Fe protein is conserved, each one encodes its own orthologue of the reductase in the corresponding gene cluster. Here we present the 2.2 Å resolution structure of VnfH from Azotobacter vinelandii, the Fe protein of the alternative, vanadium-dependent nitrogenase system, in its ADP-bound state. VnfH adopts the same conformation that was observed for NifH, the Fe protein of molybdenum nitrogenase, in complex with ADP, representing a state of the functional cycle that is ready for reduction and subsequent nucleotide exchange. The overall similarity of NifH and VnfH confirms the experimentally determined cross-reactivity of both ATP-hydrolyzing reductases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EPR:

Electron paramagnetic resonance

MR:

Molecular replacement

References

  1. Rees DC (1993) Curr Opin Struct Biol 3:921–928

    Article  CAS  Google Scholar 

  2. Leigh GJ (2004) The world’s greatest fix: A history of nitrogen in agriculture. Oxford University Press, Oxford

    Google Scholar 

  3. Smil V (2002) Ambio 31:126–131

    Article  Google Scholar 

  4. Rees DC, Tezcan FA, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB (2005) Philos Trans R Soc Lond A 363:971–984

    Article  CAS  Google Scholar 

  5. Howard JB, Rees DC (1996) Chem Rev 96:2965–2982

    Article  CAS  Google Scholar 

  6. Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC (1992) Science 257:1653–1659

    Article  CAS  Google Scholar 

  7. Burgess BK, Lowe DJ (1996) Chem Rev 96:2983–3011

    Article  CAS  Google Scholar 

  8. Grossmann JG, Hasnain SS, Yousafzai FK, Smith BE, Eady RR, Schindelin H, Kisker C, Howard JB, Tsuruta H, Muller J, Rees DC (1999) Acta Crystallogr D 55:727–728

    Article  Google Scholar 

  9. Peters JW, Fisher K, Newton WE, Dean DR (1995) J Biol Chem 270:27007–27013

    Article  CAS  Google Scholar 

  10. Angove HC, Yoo SJ, Münck E, Burgess BK (1999) J Inorg Biochem 74:65

    Google Scholar 

  11. Danyal K, Dean DR, Hoffman BM, Seefeldt LC (2011) Biochemistry 50:9255–9263

    Article  CAS  Google Scholar 

  12. Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC (2014) Chem Rev 114:4041–4062

    Article  CAS  Google Scholar 

  13. Howard JB, Kechris KJ, Rees DC, Glazer AN (2013) Multiple amino acid sequence alignment nitrogenase component 1: insights into phylogenetics and structure-function relationships. Plos One 8:e72751

    Article  Google Scholar 

  14. Einsle O (2014) J Biol Inorg Chem 19:737–745

    Article  CAS  Google Scholar 

  15. Spatzal T, Aksoyoğlu M, Zhang LM, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Science 334:940

    Article  CAS  Google Scholar 

  16. Lancaster KM, Roemelt M, Ettenhuber P, Hu YL, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) Science 334:974–977

    Article  CAS  Google Scholar 

  17. Sippel D, Einsle O (2017) Nat Chem Biol 13:956–960

    Article  CAS  Google Scholar 

  18. Lee CC, Hu YL, Ribbe MW (2010) Science 329:642

    Article  CAS  Google Scholar 

  19. Sippel D, Rohde M, Netzer J, Trncik C, Gies J, Grunau K, Djurdjevic I, Decamps L, Andrade SLA, Einsle O (2018) Science 359:1484–1489

    Article  CAS  Google Scholar 

  20. Zheng Y, Harris DF, Yu Z, Fu Y, Poudel S, Ledbetter RN, Fixen KR, Yang ZY, Boyd ES, Lidstrom ME, Seefedt LC, Harwood CS (2018) Nat Microbiol 3:281–286

    Article  CAS  Google Scholar 

  21. Setubal JC, dos Santos P, Goldman BS, Ertesvag H, Espin G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, Curatti L, Du ZJ, Godsy E, Goodner B, Hellner-Burris K, Hernandez JA, Houmiel K, Imperial J, Kennedy C, Larson TJ, Latreille P, Ligon LS, Lu J, Maerk M, Miller NM, Norton S, O’Carroll IP, Paulsen I, Raulfs EC, Roemer R, Rosser J, Segura D, Slater S, Stricklin SL, Studholme DJ, Sun J, Viana CJ, Wallin E, Wang BM, Wheeler C, Zhu HJ, Dean DR, Dixon R, Wood D (2009) J Bacteriol 191:4534–4545

    Article  CAS  Google Scholar 

  22. Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genom 13:162–174

    Article  CAS  Google Scholar 

  23. Owens CP, Katz FEH, Carter CH, Oswald VF, Tezcan FA (2016) J Am Chem Soc 138:10124–10127

    Article  CAS  Google Scholar 

  24. Hales BJ, Langosch DJ, Case EE (1986) J Biol Chem 261:5301–5306

    Google Scholar 

  25. Schlesier J, Rohde M, Gerhardt S, Einsle O (2016) J Am Chem Soc 138:239–247

    Article  CAS  Google Scholar 

  26. Lipman JG (1903) Rep N J Agric Exp Stn 24:217–285

    Google Scholar 

  27. Burk D, Lineweaver H (1930) J Bacteriol 19:389–414

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sippel D, Schlesier J, Rohde M, Trncik C, Decamps L, Djurdjevic I, Spatzal T, Andrade SLA, Einsle O (2017) J Biol Inorg Chem 22:161–168

    Article  CAS  Google Scholar 

  29. Kabsch W (2010) Acta Crystallogr D 66:125–132

    Article  CAS  Google Scholar 

  30. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Acta Crystallogr D 67:235–242

    Article  CAS  Google Scholar 

  31. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Crystallogr 40:658–674

    Article  CAS  Google Scholar 

  32. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Acta Crystallogr D 66:486–501

    Article  CAS  Google Scholar 

  33. Blanc E, Roversi P, Vonrhein C, Flensburg C, Lea SM, Bricogne G (2004) Acta Crystallogr D 60:2210–2221

    Article  CAS  Google Scholar 

  34. Schrödinger LLC (2010) The PyMOL molecular graphics system

  35. Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen JH, Liles K, Chun MJ, Li P, Gohara DW, Dolinsky T, Konecny R, Koes DR, Nielsen JE, Head-Gordon T, Geng WH, Krasny R, Wei GW, Holst MJ, McCammon JA, Baker NA (2018) Protein Sci 27:112–128

    Article  CAS  Google Scholar 

  36. Schindelin H, Kisker C, Sehlessman JL, Howard JB, Rees DC (1997) Nature 387:370–376

    Article  CAS  Google Scholar 

  37. Tezcan FA, Kaiser JT, Mustafi D, Walton MY, Howard JB, Rees DC (2005) Science 309:1377–1380

    Article  CAS  Google Scholar 

  38. Owens CP, Katz FE, Carter CH, Luca MA, Tezcan FA (2015) J Am Chem Soc 137:12704–12712

    Article  CAS  Google Scholar 

  39. Danyal K, Shaw S, Page TR, Duval S, Horitani M, Marts AR, Lukoyanov D, Dean DR, Raugei S, Hoffman BM, Seefeldt LC, Antony E (2016) Proc Natl Acad Sci USA 113:E5783–E5791

    Article  CAS  Google Scholar 

  40. Kaiser JT, Hu YL, Wiig JA, Rees DC, Ribbe MW (2011) Science 331:91–94

    Article  CAS  Google Scholar 

  41. Hu Y, Ribbe MW (2011) Coord Chem Rev 255:1218–1224

    Article  CAS  Google Scholar 

  42. Hu YL, Fay AW, Lee CC, Wiig JA, Ribbe MW (2010) Dalton T 39:2964–2971

    Article  CAS  Google Scholar 

  43. Weiss M, Hilgenfeld R (1997) J Appl Crystallogr 30:203–205

    Article  CAS  Google Scholar 

  44. Karplus PA, Diederichs K (2012) Science 336:1030–1033

    Article  CAS  Google Scholar 

  45. Cruickshank DWJ (1999) Acta Crystallogr D 55:583–601

    Article  CAS  Google Scholar 

  46. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff at beam line X06DA of the Swiss Light Source, Paul Scherrer Institute, Villigen, CH, for their excellent assistance with diffraction data collection. This work was supported by the Deutsche Forschungsgemeinschaft (RTG 1976 and PP 1927) and the European Research Council (Grant no. 310656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Einsle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohde, M., Trncik, C., Sippel, D. et al. Crystal structure of VnfH, the iron protein component of vanadium nitrogenase. J Biol Inorg Chem 23, 1049–1056 (2018). https://doi.org/10.1007/s00775-018-1602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1602-4

Keywords

Navigation