Skip to main content
Log in

Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein–ligand and protein–heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MD:

Molecular dynamics

TDN:

Trichodiene

EPT:

12, 13-epoxytrichothec-9-ene

SMs:

Secondary metabolites

SRSs:

Substrate recognition sites

P450s:

Cytochrome P450 monooxygenases

References

  1. Reino JL, Guerrer ORF, Hrnndez-Galn RIG, Collado IG (2008) Phytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  2. Hermosa R, Viterbo A, Chet I, Monte E (2012) Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  3. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  4. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  5. Chen W, Lee MKC, Jefcoate CS-C, Kim SC, Chen FYuJH (2014) Genome Biol Evol 6:1620–1634

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bowen GD, Rovira AD (1999) Adv Agron 66:1–102

    Article  Google Scholar 

  7. Jain A, Singh A, Singh S, Singh HB (2013) J Plant Growth Regul 32:388–398

    Article  CAS  Google Scholar 

  8. Malmierca MG, Cardoza RE, Alexander NJ, Mccormick SP, Hermosa RE, Monte E, Gutiérrez S (2012) Appl. Environ Microbiol 78:4856–4868

    Article  CAS  Google Scholar 

  9. Cundliffe E, Cannon M, Davies J (1974) Proc Natl Acad Sci USA 71:30–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, Mccormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, Gutie S (2011) Appl. Environ Microbiol 77:4867–4877

    Article  CAS  Google Scholar 

  11. Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Brückner H, Döhren HV (2008) Mycol Prog 7:177–219

    Article  Google Scholar 

  12. Tijerino A, Cardoza RE, Moraga J, Malmierca Vicente F, Aleu J, Collado IG, Gutiérrez S, Monte S, Hermosa R (2011) Fungal Genet. Biol 48:285–296

    CAS  Google Scholar 

  13. Shentu XP, Yuan XF, Liu WP, Xu JF, Yu XP (2015) Am J Biochem Biotechnol 11:169

    Article  Google Scholar 

  14. Hermosa R, Rubio MB, Cardoza RE, Nicolas C, Monte E, Gutiérrez S (2013) Int Microbiol 16:69–80

    CAS  PubMed  Google Scholar 

  15. Malmierca MG, Izquierdo I, Bueno McCormick SP, Cardoza RE, Alexander NJ, Barua J, Lindo L, Casquero PA, Collado IG, Monte E (2016) Environ. Microbiol 18:3991–4004

    CAS  Google Scholar 

  16. Pusztahelyi T, Holb IJ, Pocsi I (2015) Front Plant Sci 6:573

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kumari I, Ahmed M, Akhter Y (2016) Int J Biochem Cell Biol 78:370–376

    Article  CAS  PubMed  Google Scholar 

  18. Hlavica P (2017) J Inorg Biochem 167:100–115

    Article  CAS  PubMed  Google Scholar 

  19. Cresnar B, Petric S (2011) Biochim Biophys Acta (BBA)-Proteins Proteom 1814:29–35

    Article  CAS  Google Scholar 

  20. Gotoh O (1992) J Biol Chem 267:83–90

    CAS  PubMed  Google Scholar 

  21. Seifert A, Pleiss J (2009) Proteins Struct Funct Bioinform 74:1028–1035

    Article  CAS  Google Scholar 

  22. McGuffin LJ, Bryson K, Jones DT (2000) Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  23. Corpet F (1988) Nucleic Acids Res 16:10881–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim S, Thiessen PA, Bolton EE, Bryant SH (2015) Nucleic Acids Res 43(W1):W605–W611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Curr Protoc Bioinformatics. doi:10.1002/0471250953.bi0506s15

    PubMed  PubMed Central  Google Scholar 

  27. Krieger E, Nabuurs SB, Vriend G (2003) Methods Biochem Anal 44:509–524

    CAS  PubMed  Google Scholar 

  28. Berendsen HJC, Spoel Van Der D, Drunen Van R (1995) Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  29. Sandhu P, Akhter Y (2016) Arch Biochem Biophys 592:38–49

    Article  CAS  PubMed  Google Scholar 

  30. Guengerich FP (2001) Chem Res Toxicol 14:611–650

    Article  CAS  PubMed  Google Scholar 

  31. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. SchuÈttelkopf AW, Aalten Van DMF (2004) Acta Crystallogr Sect D Biol Crystallogr 60:1355–1363

    Article  Google Scholar 

  33. Vohra S, Musgaard M, Bell SG, Wong L, Zhou W, Biggin PC (2013) Protein Sci 22:1218–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  35. Micaelo NM, Macedo AL, Goodfellow BJ, Felix V (2010) J Mol Graph Model 29:396–405

    Article  CAS  PubMed  Google Scholar 

  36. Cojocaru XYUV, Mustafa G, Salo Ahen OMH, Lepesheva GI, Wade RC (2015) J Mol Recognit 28:59–73

    Article  PubMed  PubMed Central  Google Scholar 

  37. Graaf CDE, Oostenbrink C, Keizers PHJ, Tvander WIJST, Jongejan A, Vermeulen NPE (2006) J Med Chem 49:2417–2430

    Article  PubMed  Google Scholar 

  38. Podust LM, Ouellet H, Kries von JP, Montellano de PRO (2009) J Biol Chem 284:25211–25219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang H, Gay SC, Shah M, Foroozesh M, Osawa J, Liu Y, Zhang Q, Stout CD, Halpert JR, Hollenberg PF (2013) Biochemistry 52:355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guengerich FP, Munro AW (2013) J Biol Chem 288:17065–17073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bischoff R, Schlüter H (2012) J Proteom 75:2275–2296

    Article  CAS  Google Scholar 

  42. Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J (1995) Structure 3:41–62

    Article  CAS  PubMed  Google Scholar 

  43. Guallar V, Baik MH, Lippard SJ, Friesner RA (2003) Proc Natl Acad Sci 100:6998–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Podust LM, Sherman DH (2012) Nat Prod Rep 29:1251–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zanger UM, Schwab M (2013) Pharmacol Ther 138:103–141

    Article  CAS  PubMed  Google Scholar 

  46. Kimura M, Tokai T, Takahashi N, Ohsato S (2007) Biosci Biotechnol Biochem 71:2105–2123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Central University of Himachal Pradesh and Bioinformatics Resources and Applications Facility, Centre for Development in Advanced Computing, Pune for providing the computational infrastructure. RH acknowledges National Fellowship for Higher Education from University Grants Commission, Govt. of India (UGC). SS receives research stipend from UGC. Research in YA lab is supported by extramural research funds from UGC, Science and Engineering Research Board (DST, Govt. of India), and Indian Council of Medical Research. We thank Dr. P. Aparoy for his generous help during the revision. Prof. Claudio Luchinat (editor-in-chief) and two anonymous referees are also sincerely acknowledged, whose insightful comments and advice during the editorial review helped us to improve our work enormously.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Akhter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, R., Kumari, I., Sharma, S. et al. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum . J Biol Inorg Chem 22, 1197–1209 (2017). https://doi.org/10.1007/s00775-017-1496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1496-6

Keywords

Navigation