Skip to main content
Log in

Computational evidence support the hypothesis of neuroglobin also acting as an electron transfer species

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Neuroglobin (Ngb) is a recently identified hexa-coordinated globin, expressed in the nervous system of humans. Its physiological role is still debated: one hypothesis is that Ngb serves as an electron transfer (ET) species, possibly by reducing cytochrome c and preventing it to initiate the apoptotic cascade. Here, we use the perturbed matrix method (PMM), a mixed quantum mechanics/molecular dynamics approach, to investigate the redox thermodynamics of two neuroglobins, namely the human Ngb and GLB-6 from invertebrate Caenorhabditis elegans. In particular, we calculate the reduction potential of the two globins, resulting in an excellent agreement with the experimental values, and we predict the reorganization energies, λ, which have not been determined experimentally yet. The calculated λ values match well those reported for known ET proteins and thereby support a potential involvement in vivo of the two globins in ET processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blumberger J (2015) Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem Rev 115:11191–11238. doi:10.1021/acs.chemrev.5b00298

    Article  CAS  PubMed  Google Scholar 

  2. Gray HB, Winkler JR (2003) Electron tunneling through proteins. Q Rev Biophys 36:341–372. doi:10.1017/S0033583503003913

    Article  CAS  PubMed  Google Scholar 

  3. Fukuzumi S (2008) Development of bioinspired artificial photosynthetic systems. Phys Chem Chem Phys 10:2283–2297. doi:10.1039/B801198M

    Article  CAS  PubMed  Google Scholar 

  4. Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr Opin Biotechnol 18:228–234. doi:10.1016/j.copbio.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  5. Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391–409. doi:10.1146/annurev-micro-092611-150104

    Article  CAS  PubMed  Google Scholar 

  6. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972. doi:10.1038/nature06522

    Article  CAS  PubMed  Google Scholar 

  7. Frauenfelder H, Chen G, Berendzen J et al (2009) A unified model of protein dynamics. Proc Natl Acad Sci 106:5129–5134. doi:10.1073/pnas.0900336106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sagle LB, Zimmermann J, Matsuda S et al (2006) Redox-coupled dynamics and folding in cytochrome c. J Am Chem Soc 128:7909–7915. doi:10.1021/ja060851s

    Article  CAS  PubMed  Google Scholar 

  9. Sigfridsson E, Olsson MHM, Ryde U (2001) Inner-sphere reorganization energy of iron-sulfur clusters studied with theoretical methods. Inorg Chem 40:2509–2519. doi:10.1021/ic000752u

    Article  CAS  PubMed  Google Scholar 

  10. Simonson T (2002) Gaussian fluctuations and linear response in an electron transfer protein. Proc Natl Acad Sci U S A 99:6544–6549. doi:10.1073/pnas.082657099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Migliore A, Corni S, Di Felice R, Molinari E (2006) First-principles density-functional theory calculations of electron-transfer rates in azurin dimers. J Chem Phys 124:64501. doi:10.1063/1.2166233

    Article  CAS  PubMed  Google Scholar 

  12. Bortolotti CA, Amadei A, Aschi M et al (2012) The reversible opening of water channels in cytochrome c modulates the heme iron reduction potential. J Am Chem Soc 134:13670–13678. doi:10.1021/ja3030356

    Article  CAS  PubMed  Google Scholar 

  13. Daidone I, Amadei A, Zaccanti F et al (2014) How the reorganization free energy affects the reduction potential of structurally homologous cytochromes. J Phys Chem Lett 5:1534–1540

    Article  CAS  PubMed  Google Scholar 

  14. Daidone I, Paltrinieri L, Amadei A et al (2014) Unambiguous assignment of reduction potentials in diheme cytochromes. J Phys Chem B 118:7554–7560. doi:10.1021/jp506017a

    Article  CAS  Google Scholar 

  15. Zanetti-Polzi L, Daidone I, Bortolotti CA, Corni S (2014) Surface packing determines the redox potential shift of cytochrome c adsorbed on gold. J Am Chem Soc 136:12929–12937. doi:10.1021/ja505251a

    Article  CAS  PubMed  Google Scholar 

  16. Zanetti-Polzi L, Bortolotti CA, Daidone I et al (2015) A few key residues determine the high redox potential shift in azurin mutants. Org Biomol Chem 13:11003–11013. doi:10.1039/C5OB01819F

    Article  CAS  PubMed  Google Scholar 

  17. Holm L, Sander C (1993) Structural alignment of globins, phycocyanins and colicin A. FEBS Lett 315:301–306. doi:10.1016/0014-5793(93)81183-Z

    Article  CAS  PubMed  Google Scholar 

  18. Pesce A, Dewilde S, Nardini M et al (2003) Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11:1087–1095. doi:10.1016/S0969-2126(03)00166-7

    Article  CAS  PubMed  Google Scholar 

  19. Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407:520–523. doi:10.1038/35035093

    Article  CAS  PubMed  Google Scholar 

  20. Trent JT, Watts RA, Hargrove MS (2001) Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen. J Biol Chem 276:30106–30110. doi:10.1074/jbc.C100300200

    Article  CAS  PubMed  Google Scholar 

  21. Halder P, Trent J III, Hargrove M (2007) Influence of the protein matrix on intramolecular histidine ligation in ferric and ferrous hexacoordinate hemoglobins. Proteins 66:172–182. doi:10.1002/prot

    Article  CAS  PubMed  Google Scholar 

  22. Dewilde S, Kiger L, Burmester T et al (2001) Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biol Chem 276:38949–38955. doi:10.1074/jbc.M106438200

    Article  CAS  PubMed  Google Scholar 

  23. Burmester T, Hankeln T (2009) What is the function of neuroglobin? J Exp Biol 212:1423–1428. doi:10.1242/jeb.000729

    Article  CAS  PubMed  Google Scholar 

  24. Ascenzi P, Gustincich S, Marino M (2014) Mammalian nerve globins in search of functions. IUBMB Life 66:268–276. doi:10.1002/iub.1267

    Article  CAS  PubMed  Google Scholar 

  25. Burmester T, Hankeln T (2014) Function and evolution of vertebrate globins. Acta Physiol 211:501–514. doi:10.1111/apha.12312

    Article  CAS  Google Scholar 

  26. Pesce A, Bolognesi M, Bocedi A et al (2002) Neuroglobin and cytoglobin. Fresh blood for the vertebrate globin family. EMBO Rep 3:1146–1151. doi:10.1093/embo-reports/kvf248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brunori M, Giuffrè A, Nienhaus K et al (2005) Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes. Proc Natl Acad Sci USA 102:8483–8488. doi:10.1073/pnas.0408766102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giuffrè A, Moschetti T, Vallone B, Brunori M (2008) Is neuroglobin a signal transducer? IUBMB Life 60:410–413. doi:10.1002/iub.88

    Article  PubMed  Google Scholar 

  29. Tiso M, Tejero J, Basu S et al (2011) Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 286:18277–18289. doi:10.1074/jbc.M110.159541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fago A, Hundahl C, Dewilde S et al (2004) Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin: Molecular mechanisms and physiological significance. J Biol Chem 279:44417–44426. doi:10.1074/jbc.M407126200

    Article  CAS  PubMed  Google Scholar 

  31. Fago A, Mathews AJ, Moens L et al (2006) The reaction of neuroglobin with potential redox protein partners cytochrome b5 and cytochrome c. FEBS Lett 580:4884–4888. doi:10.1016/j.febslet.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  32. Bønding SH, Henty K, Dingley AJ, Brittain T (2008) The binding of cytochrome c to neuroglobin: a docking and surface plasmon resonance study. Int J Biol Macromol 43:295–299. doi:10.1016/j.ijbiomac.2008.07.003

    Article  PubMed  Google Scholar 

  33. Brittain T, Skommer J (2012) Does a redox cycle provide a mechanism for setting the capacity of neuroglobin to protect cells from apoptosis? IUBMB Life 64:419–422. doi:10.1002/iub.566

    Article  CAS  PubMed  Google Scholar 

  34. Suto D, Sato K, Ohba Y et al (2005) Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism. Biochem J 392:399–406. doi:10.1042/BJ20050580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoon J, Herzik MA, Winter MB et al (2010) Structure and properties of a bis-histidyl ligated globin from Caenorhabditis elegans. Biochemistry 49:5662–5670. doi:10.1021/bi100710a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu J, Chakraborty S, Hosseinzadeh P et al (2014) Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 114:4366–4469. doi:10.1021/cr400479b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299

    Article  CAS  Google Scholar 

  38. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  39. Blumberger J (2008) Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment. Phys Chem Chem Phys 10:5651–5667. doi:10.1039/b807444e

    Article  CAS  PubMed  Google Scholar 

  40. Zanetti Polzi L, Amadei A, Aschi M, Daidone I (2011) New insight into the IR-spectra/structure relationship in amyloid fibrils: a theoretical study on a prion peptide. J Am Chem Soc 133:11414–11417

    Article  CAS  PubMed  Google Scholar 

  41. Zanetti-Polzi L, Aschi M, Amadei A, Daidone I (2013) Simulation of the amide I infrared spectrum in photoinduced peptide folding/unfolding transitions. J Phys Chem B 117:12383–12390

    Article  CAS  PubMed  Google Scholar 

  42. Lu N, Singh JK, Kofke DA (2003) Appropriate methods to combine forward and reverse free-energy perturbation averages. J Chem Phys 118:2977–2984. doi:10.1063/1.1537241

    Article  CAS  Google Scholar 

  43. Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22:245–268. doi:10.1016/0021-9991(76)90078-4

    Article  Google Scholar 

  44. de Ruiter A, Oostenbrink C (2012) Efficient and accurate free energy calculations on trypsin inhibitors. J Chem Theory Comput 8:3686–3695. doi:10.1021/ct200750p

    Article  PubMed  Google Scholar 

  45. Chipot C, Pohorille A (2007) Free energy calculations: theory and applications in chemistry and biology. Springer Series Chem Phys. doi:10.1007/978-3-540-38448-9

    Article  Google Scholar 

  46. Amadei A, Daidone I, Bortolotti CA (2013) A general statistical mechanical approach for modeling redox thermodynamics: the reaction and reorganization free energies. RSC Adv 3:19657. doi:10.1039/c3ra42842g

    Article  CAS  Google Scholar 

  47. Guimarees BG, Hamdane D, Lechauve C et al (2014) The crystal structure of wild-type human brain neuroglobin reveals flexibility of the disulfide bond that regulates oxygen affinity. Acta Crystallogr Sect D: Biol Crystallogr 70:1005–1014. doi:10.1107/S1399004714000078

    Article  Google Scholar 

  48. Kuntal BK, Aparoy P, Reddanna P (2010) EasyModeller: a graphical interface to MODELLER. BMC Res Notes 3:226. doi:10.1186/1756-0500-3-226

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. doi:10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271. doi:10.1021/j100308a038

    Article  CAS  Google Scholar 

  51. Reif MM, Hünenberger PH (2011) Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. J Chem Phys 134:144104. doi:10.1063/1.3567022

    Article  PubMed  Google Scholar 

  52. Brown D, Clarke JHR (1984) A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids. Mol Phys 51:1243–1252. doi:10.1080/00268978400100801

    Article  CAS  Google Scholar 

  53. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H

    Article  CAS  Google Scholar 

  54. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  55. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  56. Isse AA, Gennaro A (2010) Absolute potential of the standard hydrogen electrode and the problem of interconversion of potentials in different solvents. J Phys Chem B 114:7894–7899. doi:10.1021/jp100402x

    Article  CAS  PubMed  Google Scholar 

  57. Mauk AG, Moore GR (1997) Control of metalloprotein redox potentials: what does site-directed mutagenesis of hemoproteins tell us? JBIC, J Biol Inorg Chem 2:119–125. doi:10.1007/s007750050115

    Article  CAS  Google Scholar 

  58. Bortolotti CA, Siwko ME, Castellini E et al (2011) The reorganization energy in cytochrome c is controlled by the accessibility of the heme to the solvent. J Phys Chem Lett 2:1761–1765

    Article  CAS  Google Scholar 

  59. Moser CC, Page CC, Dutton PL (2006) Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase. Philos Trans R Soc Lond B Biol Sci 361:1295–1305. doi:10.1098/rstb.2006.1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khoshtariya DE, Dolidze TD, Shushanyan M, Davis KL (2010) Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions. Proc Natl Acad Sci USA 107:2757–2762. doi:10.1073/pnas.0910837107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gray HB, Malmström BG, Williams RJP (2000) Copper coordination in blue proteins. J Biol Inorg Chem 5:551–559. doi:10.1007/s007750000146

    Article  CAS  PubMed  Google Scholar 

  62. Milischuk AA, Matyushov DV, Newton MD (2006) Activation entropy of electron transfer reactions. Chem Phys 324:172–194. doi:10.1016/j.chemphys.2005.11.037

    Article  CAS  Google Scholar 

  63. Farver O, Marshall NM, Wherland S et al (2013) Designed azurins show lower reorganization free energies for intraprotein electron transfer. Proc Natl Acad Sci USA 110:10536–10540. doi:10.1073/pnas.1215081110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iwaki M, Itoh S (1989) Electron transfer in spinach photosystem I reaction center containing benzo-, naphtho- and anthraquinones in place of phylloquinone. FEBS Lett 256:11–16. doi:10.1016/0014-5793(89)81708-9

    Article  CAS  Google Scholar 

  65. Moser CC, Farid TA, Chobot SE, Dutton PL (2006) Electron tunneling chains of mitochondria. Biochim Biophys Acta 1757:1096–1109. doi:10.1016/j.bbabio.2006.04.015

    Article  CAS  PubMed  Google Scholar 

  66. Gray HB, Winkler JR (1996) Electron transfer in proteins. Annu Rev Biochem 65:537–561

    Article  CAS  PubMed  Google Scholar 

  67. Murgida DH, Hildebrandt P (2002) Electrostatic-field dependent activation energies modulate electron transfer of cytochrome c. J Phys ChemB 106:12814–12819

    Article  CAS  Google Scholar 

  68. Corni S (2005) The reorganization energy of azurin in bulk solution and in the electrochemical scanning tunneling microscopy setup. J Phys Chem B 109:3423–3430. doi:10.1021/jp0459920

    Article  CAS  PubMed  Google Scholar 

  69. Daidone I, Amadei A (2012) Essential dynamics: foundation and applications. Wiley Interdiscip Rev Comput Mol Sci 2:762–770. doi:10.1002/wcms.1099

    Article  CAS  Google Scholar 

  70. Kiger L, Tilleman L, Geuens E et al (2011) Electron transfer function versus oxygen delivery: a comparative study for several hexacoordinated globins across the animal kingdom. PLoS One. doi:10.1371/journal.pone.0020478

    PubMed  PubMed Central  Google Scholar 

  71. Weiland TR, Kundu S, Trent JT et al (2004) Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics. J Am Chem Soc 126:11930–11935. doi:10.1021/ja046990w

    Article  CAS  PubMed  Google Scholar 

  72. De Sanctis D, Pesce A, Nardini M et al (2004) Structure-function relationships in the growing hexa-coordinate hemoglobin sub-family. IUBMB Life 56:643–651. doi:10.1080/15216540500059640

    Article  PubMed  Google Scholar 

  73. Wilson MT, Greenwood C, Brunori M, Antonini E (1975) Kinetic studies on the reaction between cytochrome c oxidase and ferrocytochrome c. Biochem J 147:145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guidolin D, Agnati LF, Tortorella C et al (2014) Neuroglobin as a regulator of mitochondrial-dependent apoptosis: a bioinformatics analysis. Int J Mol Med 33:111–116. doi:10.3892/ijmm.2013.1564

    CAS  PubMed  Google Scholar 

  75. Kakar S, Hoffman FG, Storz JF et al (2010) Structure and reactivity of hexacoordinate hemoglobins. Biophys Chem 152:1–14. doi:10.1016/j.bpc.2010.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huberts DHEW, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta Mol Cell Res 1803:520–525. doi:10.1016/j.bbamcr.2010.01.022

    Article  CAS  Google Scholar 

  77. Jeffery CJ (2015) Why study moonlighting proteins? Front Genet 6:211. doi:10.3389/fgene.2015.00211

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the CINECA award under the ISCRA initiative for the availability of high performance computing resources and support. We thank Andrea Amadei and Massimiliano Aschi for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabella Daidone or Carlo Augusto Bortolotti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2017_1455_MOESM1_ESM.pdf

Supplementary Material Details on the quantum chemical calculations and on the theoretical methods for the estimation of the reduction potential; First eigenvector components for GLB-6 and Ngb (PDF 1178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paltrinieri, L., Di Rocco, G., Battistuzzi, G. et al. Computational evidence support the hypothesis of neuroglobin also acting as an electron transfer species. J Biol Inorg Chem 22, 615–623 (2017). https://doi.org/10.1007/s00775-017-1455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1455-2

Keywords

Navigation