Skip to main content

Advertisement

Log in

Thiol oxidase ability of copper ion is specifically retained upon chelation by aldose reductase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bovine lens aldose reductase is susceptible to a copper-mediated oxidation, leading to the generation of a disulfide bridge with the concomitant incorporation of two equivalents of the metal and inactivation of the enzyme. The metal complexed by the protein remains redox active, being able to catalyse the oxidation of different physiological thiol compounds. The thiol oxidase activity displayed by the enzymatic form carrying one equivalent of copper ion (Cu1-AR) has been characterized. The efficacy of Cu1-AR in catalysing thiol oxidation is essentially comparable to the free copper in terms of both thiol concentration and pH effect. On the contrary, the two catalysts are differently affected by temperature. The specificity of the AR-bound copper towards thiols is highlighted with Cu1-AR being completely ineffective in promoting the oxidation of both low-density lipoprotein and ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  2. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  3. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klaunig J, Kamendulis LM, Hocevar BA (2010) Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 38:96–109

    Article  CAS  PubMed  Google Scholar 

  5. Telpoukhovskaia MA, Orvig C (2013) Werner coordination chemistry and neurodegeneration. Chem Soc Rev 42:1836–1846

    Article  CAS  PubMed  Google Scholar 

  6. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van den Berghe PVE, Klomp LWJ (2010) Posttranslational regulation of copper transporters. J Biol Inorg Chem 15:37–46

    Article  CAS  PubMed  Google Scholar 

  8. Velthuis NA, Gaeth AP, Pearson RB, Gabriel K, Camakaris J (2009) The multi layered regulation of copper translocating P-type ATPases. Biometals 22:177–190

    Article  Google Scholar 

  9. Lutsenko S, Barnes NL, Bartee MY, Dymitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87:1011–1046

    Article  CAS  PubMed  Google Scholar 

  10. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Asp Med 26:268–298

    Article  CAS  Google Scholar 

  11. Church SJ, Begley P, Kureishy N, McHarg S, Bishop PN, Bechtold DA, Unwin RD, Cooper GJS (2015) Deficient copper concentrations in dried-defatted hepatic tissue from ob/ob mice: a potential model for study of defective copper regulation in metabolic liver disease. Biochem Biophys Res Commun 460:549–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dalal N, Hooberman A, Mariani R, Sirota R, Lestingi T (2015) Copper deficiency mimicking myelodysplastic syndrome. Clin Case Rep 3:325–727

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barry AN, Shinde U, Lutsenko S (2010) Structural organization of human Cu-transporting ATPases: learning from building blocks. J Biol Inorg Chem 15:47–59

    Article  CAS  PubMed  Google Scholar 

  14. Bauerly KA, Kelleher SL, Lonnerdal B (2005) Effects of copper supplementation on copper absorption, tissue distribution, and copper transporter expression in an infant rat model. Am J Physiol Gastrointest Liver Physiol 288:G1007–G1014

    Article  CAS  PubMed  Google Scholar 

  15. Davis SR, Cousins RJ (2000) Metallothionein expression in animals: a physiological perspective and functions. J Nutr 130:1085–1088

    CAS  PubMed  Google Scholar 

  16. Kuo YM, Gybina AA, Pyatskowit JW, Gitschier J, Prohaska JR (2006) Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J Nutr 136:21–26

    CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  PubMed  Google Scholar 

  18. de Bie P, Muller P, Wijmenga C, Klomp LW (2007) Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 44:673–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Squitti R, Mendez AJ, Simonelli I, Ricordi C (2017) Diabetes and Alzheimer’s disease: can elevated free copper predict the risk of the disease? J Alzheimers Dis 56:1055–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ehrenwald E, Chisolm GM, Fox PL (1994) Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J Clin Invest 93:1493–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Opazo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, Cappai R, Masters CL, Tanzi RE, Inestrosa NC, Bush AI (2002) Metalloenzyme-like activity of Alzheimer’s disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J Biol Chem 277:40302–40308

    Article  CAS  PubMed  Google Scholar 

  22. Winterbourn C, Peskin AV, Parsons-Mair HN (2002) Thiol oxidase activity of copper, zinc superoxide dismutase. J Biol Chem 277:1906–1911

    Article  CAS  PubMed  Google Scholar 

  23. Yim MB, Yim HS, Chock PB, Stadtman ER (1998) Pro-oxidant activity of Cu, Zn-superoxide dismutase. Age 21:91–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cecconi I, Moroni M, Vilardo PG, Dal Monte M, Borella P, Rastelli G, Costantino L, Garland D, Carper D, Petrash JM, Del Corso A, Mura U (1998) Oxidative modification of aldose reductase induced by copper ion. Factors and conditions affecting the process. Biochemistry 37:14167–14174

    Article  CAS  PubMed  Google Scholar 

  25. Cecconi I, Scaloni A, Rastelli G, Moroni M, Vilardo PG, Costantino L, Cappiello M, Garland D, Carper D, Petrash JM, Del Corso A, Mura U (2002) Oxidative modification of aldose reductase induced by copper ion. Definition of the metal-protein interaction mechanism. J Biol Chem 277:42017–42027

    Article  CAS  PubMed  Google Scholar 

  26. Del-Corso A, Balestri F, Di Bugno E, Moschini R, Cappiello M, Sartini S, La-Motta C, Da-Settimo F, Mura U (2013) A new approach to control the enigmatic activity of aldose reductase. PLoS One. doi:10.1371/journal.pone.0074076

    PubMed  PubMed Central  Google Scholar 

  27. Moschini R, Marini I, Malerba M, Cappiello M, Del Corso A, Mura U (2006) Chaperone-like activity of alpha-crystallin toward aldose reductase oxidatively stressed by copper ion. Arch Biochem Biophys 453:13–17

    Article  CAS  PubMed  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  29. Cappiello M, Voltarelli M, Giannessi M, Cecconi I, Camici G, Manao G, Del Corso A, Mura U (1994) Glutathione dependent modification of bovine lens aldose reductase. Exp Eye Res 58:491–501

    Article  CAS  PubMed  Google Scholar 

  30. Yagi K (1987) Lipid peroxides and human disease. Chem Phys Lipids 45:337–351

    Article  CAS  PubMed  Google Scholar 

  31. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  32. Cappiello M, Voltarelli M, Cecconi I, Vilardo PG, Dal Monte M, Marini I, Del Corso A, Wilson DK, Quiocho FA, Petrash JM, Mura U (1996) Specifically targeted modification of human aldose reductase by physiological disulfides. J Biol Chem 271:33539–33544

    Article  CAS  PubMed  Google Scholar 

  33. Cappiello M, Vilardo PG, Cecconi I, Leverenz V, Giblin FJ, Del Corso A, Mura U (1995) Occurrence of glutathione-modified aldose reductase in oxidatively stressed bovine lens. Biochem Biophys Res Commun 207:775–782

    Article  CAS  PubMed  Google Scholar 

  34. Dokken KM, Parsons JG, McClure J, Gardea-Torresdey JL (2009) Synthesis and structural analysis of copper(II) cysteine complexes. Inorg Chim Acta 362:395–401

    Article  CAS  Google Scholar 

  35. Patterson RA, Lamb DJ, Leake DS (2003) Mechanisms by which cysteine can inhibit or promote the oxidation of low density lipoprotein by copper. Atherosclerosis 169:87–94

    Article  CAS  PubMed  Google Scholar 

  36. Pecci L, Montefoschi G, Musci G, Cavallini D (1997) Novel findings on the copper catalyzed oxidation of cysteine. Amino Acids 13:355–367

    Article  CAS  Google Scholar 

  37. Ząbek-Adamska A, Drożdż R, Naskalski JW (2013) Dynamics of reactive oxygen species generation in the presence of copper(II)–histidine complex and cysteine. Acta Biochim Pol 60:565–571

    PubMed  Google Scholar 

  38. Burkitt MJ (2001) A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, α-tocopherol, thiols, and ceruloplasmin. Arch Biochem Biophys 394:117–135

    Article  CAS  PubMed  Google Scholar 

  39. Ghaffari MA, Ghiasvand T (2010) Kinetic study of low density lipoprotein oxidation by copper. Indian J Clin Biochem 25:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sasabe N, Keyamura Y, Obama T, Inoue N, Masuko Y, Igarashi Y, Aiuchi T, Kato R, Yamaguchi T, Kuwata H, Iwamoto S, Miyazaki A, Hara S, Yoshikawa T, Itabe H (2014) Time course-changes in phosphatidylcholine profile during oxidative modification of low-density lipoprotein. Lipids Health Dis 13:48–61

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ziouzenkova O, Sevanian A, Abuja PM, Ramos P, Esterbauer H (1998) Copper can promote oxidation of LDL by markedly different mechanisms. Free Radic Biol Med 24:607–623

    Article  CAS  PubMed  Google Scholar 

  42. Samocha-Bonet D, Lichtenberg D, Pinchuk I (2005) Kinetic studies of copper-induced oxidation of urate, ascorbate and their mixtures. J Inorg Biochem 99:1963–1972

    Article  CAS  PubMed  Google Scholar 

  43. Xu J, Jordan RB (1990) Kinetics and mechanism of the reaction of aqueous copper with ascorbic acid. Inorg Chem 29:2933–2935

    Article  CAS  Google Scholar 

  44. Haase G, Dunkley WL (1969) Ascorbic acid and copper in linoleate oxidation. III. Catalysts in combination. J Lipid Res 10:568–576

    CAS  PubMed  Google Scholar 

  45. Kano Y, Sakano Y, Fujimoto D (1987) Cross-linking of collagen by ascorbate-copper ion systems. J Biochem 102:839–842

    Article  CAS  PubMed  Google Scholar 

  46. Pfeiffer RF (2007) Wilson’s disease. Semin Neurol 27:123–132

    Article  PubMed  Google Scholar 

  47. Aydin E, Cumurcu T, Ozugurlu F, Ozyurt H, Sahinoglu S, Mendil D, Hasdemir E (2005) Levels of iron, zinc, and copper in aqueous humor, lens, and serum in nondiabetic and diabetic patients: their relation to cataract. Biol Trace Elem Res 108:33–41

    Article  CAS  PubMed  Google Scholar 

  48. Del Corso A, Vilardo PG, Cappiello M, Cecconi I, Dal Monte M, Barsacchi D, Mura U (2002) Physiological thiols as promoters of glutathione oxidation and modifying agents in protein S-thiolation. Arch Biochem Biophys 397:392–398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Pisa University, PRA 2015. We are indebted to Dr. G. Pasqualetti and Dr. R. Di Sacco (veterinary staff of Consorzio Macelli S. Miniato, Pisa) for their valuable co-operation in the bovine lenses collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Del-Corso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balestri, F., Moschini, R., Cappiello, M. et al. Thiol oxidase ability of copper ion is specifically retained upon chelation by aldose reductase. J Biol Inorg Chem 22, 559–565 (2017). https://doi.org/10.1007/s00775-017-1447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1447-2

Keywords

Navigation