Skip to main content
Log in

Cobalt complexes as internal standards for capillary zone electrophoresis–mass spectrometry studies in biological inorganic chemistry

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Run-by-run variations are very common in capillary electrophoretic (CE) separations and cause imprecision in both the migration times and the peak areas. This makes peak and kinetic trend identification difficult and error prone. With the aim to identify suitable standards for CE separations which are compatible with the common detectors UV, ESI-MS, and ICP-MS, the CoIII complexes [Co(en)3]Cl3, [Co(acac)3] and K[Co(EDTA)] were evaluated as internal standards in the reaction of the anticancer drug cisplatin and guanosine 5′-monophosphate as an example of a classical biological inorganic chemistry experiment. These CoIII chelate complexes were considered for their stability, accessibility, and the low detection limit for Co in ICP-MS. Furthermore, the CoIII complexes are positively and negatively charged as well as neutral, allowing the detection in different areas of the electropherograms. The background electrolytes were chosen to cover a wide pH range. The compatibility to the separation conditions was dependent on the ligands attached to the CoIII centers, with only the acetylacetonato (acac) complex being applicable in the pH range 2.8–9.0. Furthermore, because of being charge neutral, this compound could be used as an electroosmotic flow (EOF) marker. In general, employing Co complexes resulted in improved data sets, particularly with regard to the migration times and peak areas, which resulted, for example, in higher linear ranges for the quantification of cisplatin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CZE:

Capillary zone electrophoresis

BGE:

Background electrolyte

ICP-MS:

Inductively coupled plasma-mass spectrometry

ESI-MS:

Electrospray ionization-mass spectrometry

5′-GMP:

Guanosine 5′-monophosphate

[Co(en)3]Cl3 :

Tris(ethylenediamine)cobalt(III)

[Co(acac)3]:

Tris(acetylacetonato)cobalt(III)

K[Co(EDTA)]:

Potassium ethylenediaminetetraacetatocobaltate(III)

References

  1. Bytzek AK, Hartinger CG (2012) Electrophoresis 33:622–634

    Article  CAS  PubMed  Google Scholar 

  2. Holtkamp H, Hartinger CG (2015) Drug Discov Today Technol 16:16–22

    Article  PubMed  Google Scholar 

  3. Holtkamp H, Grabmann G, Hartinger CG (2015) Electrophoresis 37:959–972

    Article  Google Scholar 

  4. Grabmann G, Meier SM, Scaffidi-Domianello YY, Galanski M, Keppler BK, Hartinger CG (2012) J Chromatogr A 1267:156–161

    Article  CAS  PubMed  Google Scholar 

  5. Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA and Keppler BK (2006) Dalton Trans:1796–1802. http://pubs.rsc.org/en/content/articlelanding/2006/dt/b511792e#!divAbstract

  6. Dömötör O, Hartinger CG, Bytzek AK, Kiss T, Keppler BK, Enyedy EA (2013) J Biol Inorg Chem 18:9–17

    Article  PubMed  Google Scholar 

  7. Warnke U, Rappel C, Meier H, Kloft C, Galanski M, Hartinger CG, Keppler BK, Jaehde U (2004) ChemBioChem 5:1543–1549

    Article  CAS  PubMed  Google Scholar 

  8. Groessl M, Hartinger CG, Połeć-Pawlak K, Jarosz M, Dyson PJ, Keppler BK (2008) Chem Biodivers 5:1609–1614

    Article  CAS  PubMed  Google Scholar 

  9. Groessl M, Hartinger CG, Polec-Pawlak K, Jarosz M, Keppler BK (2008) Electrophoresis 29:2224–2232

    Article  CAS  PubMed  Google Scholar 

  10. Groessl M, Bytzek A, Hartinger CG (2009) Electrophoresis 30:2720–2727

    Article  CAS  PubMed  Google Scholar 

  11. Bytzek AK, Enyedy ÉA, Kiss T, Keppler BK, Hartinger CG (2009) Electrophoresis 30:4075–4082

    Article  CAS  PubMed  Google Scholar 

  12. Mayer BX (2001) J Chromatogr A 907:21–37

    Article  CAS  PubMed  Google Scholar 

  13. Møller C, Stürup S, Hansen HR, Gammelgaard B (2009) J Anal At Spectrom 24:1208–1212

    Article  Google Scholar 

  14. Pröfrock D, Prange A (2012) Appl Spectrosc 66:843–868

    Article  PubMed  Google Scholar 

  15. Wolf C, Schaumloffel D, Richarz A-N, Prange A, Bratter P (2003) Analyst 128:576–580

    Article  CAS  PubMed  Google Scholar 

  16. Franze B, Engelhard C (2014) Anal Chem 86:5713–5720

    Article  CAS  PubMed  Google Scholar 

  17. Bytzek AK, Reithofer MR, Galanski M, Groessl M, Keppler BK, Hartinger CG (2010) Electrophoresis 31:1144–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shalhoub GM (1980) J Chem Educ 57:525

    Article  CAS  Google Scholar 

  19. Dwyer FP, Gyarfas EC, Mellor DP (1955) J Phys Chem 59:296–297

    Article  CAS  Google Scholar 

  20. Yang J, Bose S, Hage DS (1996) J Chromatogr A 735:209–220

    Article  CAS  Google Scholar 

  21. Groessl M, Hartinger CG, Dyson PJ, Keppler BK (2008) J Inorg Biochem 102:1060–1065

    Article  CAS  PubMed  Google Scholar 

  22. Pröfrock D, Leonhard P, Prange A (2003) Anal Bioanal Chem 377:132–139

    Article  PubMed  Google Scholar 

  23. Buckingham DA, Clark CR (1987) In: Wilkinson G, Gillard RD, McCleverty JA (eds) Comprehensive coordination chemistry: the synthesis, reactions, properties & applications of coordination compounds. Pergamon, Oxford, pp 635–900

    Google Scholar 

  24. Carbonaro RF, Stone AT (2005) Anal Chem 77:155–164

    Article  CAS  PubMed  Google Scholar 

  25. Grabmann G, Keppler B, Hartinger C (2013) Anal Bioanal Chem 405:6417–6424

    Article  CAS  PubMed  Google Scholar 

  26. Bytzek AK, Boeck K, Hermann G, Hann S, Keppler BK, Hartinger CG, Koellensperger G (2011) Metallomics 3:1049–1055

    Article  CAS  PubMed  Google Scholar 

  27. Zabel R, Kullmann M, Kalayda GV, Jaehde U, Weber G (2015) Electrophoresis 36:509–517

    Article  CAS  PubMed  Google Scholar 

  28. Bjerrum J, Rasmussen SE (1952) Acta Chem Scand 6:1265

    Article  CAS  Google Scholar 

  29. Navon G, Panigel R, Meyerstein D (1972) Inorg Chim Acta 6:299–302

    Article  CAS  Google Scholar 

  30. Zenker A, Galanski M, Bereuter TL, Keppler BK, Lindner W (2000) J Chromatogr B Biomed Appl 745:211–219

    Article  CAS  Google Scholar 

  31. Küng A, Strickmann DB, Galanski M, Keppler BK (2001) J Inorg Biochem 86:691–698

    Article  PubMed  Google Scholar 

  32. Warnke U, Gysler J, Hofte B, Tjaden UR, van der Greef J, Kloft C, Schunack W, Jaehde U (2001) Electrophoresis 22:97–103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the organizations and foundations that have supported our research efforts in this area, especially the University of Auckland (University of Auckland Doctoral Scholarship to H. H. and M. K.), the India-New Zealand Education Council, Education New Zealand, the India-New Zealand Research Institute, and the Royal Society of New Zealand and COST CM1105. We thank Auckland Science Analytical Services of the University of Auckland for access to their facilities. We are grateful to Prof. Gordon Miskelly for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian G. Hartinger.

Additional information

Dedicated to Prof. Joachim W. Heinicke on the occasion of his 70th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2016_1426_MOESM1_ESM.pdf

CZE–ESI-MS data; ICP-MS measurement parameters; kinetic data on the reaction of cisplatin with GMP; effects of internal standardization on the migration times; and BGE-dependent migration of cisplatin and its reaction products (PDF 629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holtkamp, H.U., Morrow, S.J., Kubanik, M. et al. Cobalt complexes as internal standards for capillary zone electrophoresis–mass spectrometry studies in biological inorganic chemistry. J Biol Inorg Chem 22, 789–798 (2017). https://doi.org/10.1007/s00775-016-1426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1426-z

Keywords

Navigation