Skip to main content
Log in

NMR study of the effects of some bleomycin C-termini on the structure of a DNA hairpin with the 5′-GC-3′ binding site

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The antibiotics known as bleomycins constitute a family of natural products clinically employed for the treatment of a wide spectrum of cancers. The drug acts as an antitumor agent by virtue of the ability of a metal complex of the antibiotic to cleave DNA. Bleomycins are differentiated by their C-terminal regions. Previous structural studies involving metal–bleomycin–DNA triads have allowed the identification of the bithiazole-(C-terminus substituent) segment in this molecule as the one that most closely interacts with DNA. Three different modes of binding of metallo-bleomycins to DNA (partial or total intercalation of the bithiazole unit between DNA bases, or binding to the minor groove) have been proposed in the literature. The therapeutic use of bleomycin is frequently associated with the development of pulmonary fibrosis. The severity of this side effect has been attributed to the C-terminus of the antibiotic by some researchers. The degree of pulmonary toxicity of bleomycin-A2 and -A5, were found to be higher than those of bleomycin-B2 and peplomycin. Since the introduction of Blenoxane to clinical medicine in 1972, attempts have been made at modifying the basic bleomycin structure at the C-terminus to improve its therapeutic index. However, the pharmacological and toxicological importance of particular C-termini on bleomycin remains unclear. The present study was designed to determine the effect of Zn(II)bleomycin-A2, -A5, -B2, and Zn(II)peplomycin on the structure of a DNA hairpin containing the 5′-GC-3′ binding site. We provide evidence that different Zn(II)bleomycins affect the structure of the tested DNA segment in different fashions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A:

Adenine

Ala:

β-Aminoalanine

b-b:

Base–base

Bit:

Bithiazole

BLMs:

Bleomycins

b-s:

Base–sugar

C:

Cytosine

1D:

One-dimensional

Δδs:

Differences in chemical shifts

FID:

Free induction decay

G:

Guanine

Gul:

α-l-Gulose

Hist:

β-Hydoxyhistidine

Mann:

α-d-Mannose

MBLMs:

Metallo-bleomycins

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect cross-signals

NOESY:

Nuclear Overhauser effect spectroscopy

OL:

Oligonucleotide

PEP:

Peplomycin

ppm:

Parts per million

Pyr:

Pyrimidinylpropionamide

s-s:

Sugar–sugar

T:

Thymine

Tails:

C-terminus substituents

Thre:

Threonine

TOCSY:

Totally correlated spectroscopy

Val:

Methylvalerate

References

  1. Umezawa H, Maeda K, Takeuchi T, Okami J (1966) J Antibiot 19:200–209

    CAS  PubMed  Google Scholar 

  2. Bennett JM, Reich SD (1979) Ann Intern Med 90:945–948

    Article  CAS  PubMed  Google Scholar 

  3. Carlson RW, Sikic BI, Turbow MM, Ballon SC (1983) J Clin Oncol 1:645–651

    CAS  PubMed  Google Scholar 

  4. Hecht SM (1995) In: Foye WO (ed) Cancer chemotherapeutic agents. ACS Professional Reference Book, Washington, D. C, pp 369–388

    Google Scholar 

  5. Einhorn LH, Donohue J (1977) Ann Intern Med 87:293–298

    Article  CAS  PubMed  Google Scholar 

  6. Umezawa H (1997) In: Hecht SM (ed) Bleomycin: chemical, biochemical and biological aspects. Springer, New York, pp 24–36

    Google Scholar 

  7. Schroeder BR, Ghare MI, Bhattacharya C, Paul R, Yu ZQ, Zaleski PA, Bozeman TC, Rishel MJ, Hecht SM (2014) J Am Chem Soc 136:13641–13656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Caceres-Cortes J, Sugiyama H, Ikudome K, Saito I, Wang AHJ (1997) Biochemistry 36:9995–10005

    Article  CAS  PubMed  Google Scholar 

  9. Hoehn ST, Junker HD, Bunt RC, Turner CJ, Stubbe J (2001) Biochemistry 40:5894–5905

    Article  CAS  PubMed  Google Scholar 

  10. Lui SM, Vanderwall DE, Wu W, Tang X-J, Turner CJ, Kozarich JW, Stubbe J (1997) J Am Chem Soc 119:9603–9613

    Article  CAS  Google Scholar 

  11. Manderville RA, Ellena JF, Hecht SM (1995) J Am Chem Soc 117:7891–7903

    Article  CAS  Google Scholar 

  12. Vanderwall DE, Lui SM, Turner CJ, Kozarich JW, Stubbe J (1997) Chem Biol 4:373–387

    Article  CAS  PubMed  Google Scholar 

  13. Wu W, Vaderwall DE, Stubbe J, Kozarich JW, Turner CJ (1994) J Am Chem Soc 116:10843–10844

    Article  CAS  Google Scholar 

  14. Wu W, Vanderwall DE, Lui SM, Tang X-J, Turner CJ, Kozarich JW, Stubbe J (1996) J Am Chem Soc 118:1268–1280

    Article  CAS  Google Scholar 

  15. Wu W, Vanderwall DE, Turner CJ, Kozarich JW, Stubbe J (1996) J Am Chem Soc 118:1281–1294

    Article  CAS  Google Scholar 

  16. Wu W, Vanderwall DE, Teramoto S, Lui SM, Hoehn ST, Tang X-J, Turner CJ, Boger DL, Kozarich JW, Stubbe J (1998) J Am Chem Soc 120:2239–2250

    Article  CAS  Google Scholar 

  17. Wu W, Vanderwall DE, Turner CJ, Hoehn S, Chen JY, Kozarich JW, Stubbe J (2002) Nucleic Acids Res 30:4881–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao CQ, Xia CW, Mao QK, Forsterling H, DeRose E, Antholine WE, Subczynski WK, Petering DH (2002) J Inorg Biochem 91:259–268

    Article  CAS  PubMed  Google Scholar 

  19. Goodwin KD, Lewis MA, Long EC, Georgiadis MM (2008) Proc Natl Acad Sci USA 105:5052–5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raisfeld IH, Chovan JP, Frost S (1982) Life Sci 30:1391–1398

    Article  CAS  PubMed  Google Scholar 

  21. Raisfeld IH, Chu P, Hart NK, Lane A (1982) Toxicol Appl Pharm 63:351–362

    Article  CAS  Google Scholar 

  22. Raisfeld IH (1980) Toxicol Appl Pharm 56:326–336

    Article  CAS  Google Scholar 

  23. Tanaka W, Takita T (1979) Heterocyles 13:469–476

    Article  CAS  Google Scholar 

  24. Oka S (1980) Recent Results Cancer Res 74:163–171

    Article  CAS  PubMed  Google Scholar 

  25. Raisfeld IH, Kundahl ER, Sawey MJ, Chovan JP, Depasquale J (1982) Clin Res 30:A437

    Google Scholar 

  26. Raisfeld IH (1981) Clin Pharmacol Ther 29:274

    Google Scholar 

  27. Raisfeld IH (1980) Clin Res 28:A530

    Google Scholar 

  28. Raisfeld IH (1979) Clin Res 27:A445

    Google Scholar 

  29. Takahashi K, Aoyagi HS, Koyu A, Kuramochi H, Yoshioka O, Matsuda A, Fujii A, Umezawa H (1979) J Antibiot 32:36–42

    Article  CAS  PubMed  Google Scholar 

  30. Ito K, Handa J, Irie Y, Ezura H, Kumagai M, Irie Y, Suzuki A, Hagiwara T, Yamane H, Miyamoto K, Yamashita T, Tsubosaki M, Matsuda AN, Konoha N (1979) J Antibiot 32:387–450

    CAS  Google Scholar 

  31. Ishizuka M, Takayama H, Takeuchi T, Umezawa H (1967) J Antibiot 10:15–24

    Google Scholar 

  32. Ishizuka M, Takayama H, Takeuchi T, Umezawa H (1966) J Antibiot 19:260–271

    CAS  PubMed  Google Scholar 

  33. Gobbi PG, Federico M (2012) CRC Cr Rev Oncol-Hem 82:18–24

    Article  Google Scholar 

  34. Lehmann TE, Ming L-J, Rosen ME, Que L Jr (1997) Biochemistry 36:2807–2816

    Article  CAS  PubMed  Google Scholar 

  35. Lehmann TE, Serrano ML, Que L Jr (2000) Biochemistry 39:3886–3898

    Article  CAS  PubMed  Google Scholar 

  36. Lehmann TE (2002) J Biol Inorg Chem 7:305–312

    Article  CAS  PubMed  Google Scholar 

  37. Lehmann TE, Li Y (2012) J Antibiot 65:25–33

    Article  CAS  PubMed  Google Scholar 

  38. Lehmann TE, Li Y (2012) J Biol Inorg Chem 17:761–771

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Lehmann TE (2012) J Inorg Biochem 111:50–58

    Article  CAS  PubMed  Google Scholar 

  40. Feigon J, Denny WA, Leupin W, Kearns R (1984) J Med Chem 27:450–465

    Article  CAS  PubMed  Google Scholar 

  41. Batist G, Andrews JL Jr (1981) JAMA J Am Med Assoc 246:1449–1453

    Article  CAS  Google Scholar 

  42. Cooper JAD Jr, White DA, Matthay RA (1986) Am Rev Respir Dis 133:321–340

    CAS  PubMed  Google Scholar 

  43. Ginsberg SJ, Comis RL (1982) Semin Oncol 9:34–51

    CAS  PubMed  Google Scholar 

  44. Muggia FM, Louie AC, Sikic BI (1983) Cancer Treat Rev 10:221–243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in whole by the National Institute of Health [Grant 1R15GM106285-01A1]. Our gratitude also goes to Nippon Kayaku Co., Ltd. (Tokyo, Japan) for the generous gift of peplomycin. We also acknowledge Dr. Alexander Goroncy for help collecting the NMR data presented in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa E. Lehmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, T.E., Murray, S.A., Ingersoll, A.D. et al. NMR study of the effects of some bleomycin C-termini on the structure of a DNA hairpin with the 5′-GC-3′ binding site. J Biol Inorg Chem 22, 121–136 (2017). https://doi.org/10.1007/s00775-016-1413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1413-4

Keywords

Navigation