Skip to main content

Advertisement

Log in

Increased generation of intracellular reactive oxygen species initiates selective cytotoxicity against the MCF-7 cell line resultant from redox active combination therapy using copper–thiosemicarbazone complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The combination of cytotoxic copper–thiosemicarbazone complexes with phenoxazines results in an up to 50-fold enhancement in the cytotoxic potential of the thiosemicarbazone against the MCF-7 human breast adenocarcinoma cell line over the effect attributable to drug additivity—allowing minimization of the more toxic copper–thiosemicarbazone component of the therapy. The combination of a benzophenoxazine with all classes of copper complex examined in this study proved more effective than combinations of the copper complexes with related isoelectronic azines. The combination approach results in rapid elevation of intracellular reactive oxygen levels followed by apoptotic cell death. Normal fibroblasts representative of non-cancerous cells (MRC-5) did not display a similar elevation of reactive oxygen levels when exposed to similar drug levels. The minimization of the copper–thiosemicarbazone component of the therapy results in an enhanced safety profile against normal fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peña MO, Lee J, Thiele DJ (1999) J Nutr 129(7):1251–1260

    PubMed  Google Scholar 

  2. Evans GW (1973) Physiol Rev 53(3):535–570

    CAS  PubMed  Google Scholar 

  3. Kouremenou-Dona E, Dona A, Papoutsis J, Spiliopoulou C (2006) Sci Total Environ 359(1–3):76–81

    Article  CAS  PubMed  Google Scholar 

  4. Kuo HW, Chen SF, Wu CC, Chen DR, Lee JH (2002) Biol Trace Elem Res 89:1–11

    Article  CAS  PubMed  Google Scholar 

  5. Gupte A, Mumper RJ (2009) Cancer Treat Rev 35(1):32–46

    Article  CAS  PubMed  Google Scholar 

  6. Gupta SK, Shukla VK, Vaidya MP, Roy SK, Gupta S (1991) J Surg Oncol 46:178–181

    Article  CAS  PubMed  Google Scholar 

  7. Buettner GR, Jurkiewicz BA (1996) Radiat Res 145:532–541

    Article  CAS  PubMed  Google Scholar 

  8. Schumaker PT (2006) Cancer Cell 10(3):175–176

    Article  Google Scholar 

  9. Ma B, Goh BC, Tan EH, Lam KC, Soo R, Leong SS, Wang LZ, Mo F, Chan AT (2008) Investig New Drug 26(2):169–173

    Article  CAS  Google Scholar 

  10. Kalinowski DS, Richardson DR (2005) Pharmacol Rev 57(4):547–583

    Article  CAS  PubMed  Google Scholar 

  11. Whitnall M, Howard J, Ponka P, Richardson DR (2006) Proc Natl Acad Sci USA 103(40):14901–14906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jansson PJ, Sharpe PC, Bernhardt PV, Richardson DR (2010) J Med Chem 53(15):5759–5769

    Article  CAS  PubMed  Google Scholar 

  13. Lovejoy DB, Jansson PJ, Brunk U, Wong J, Ponka P, Richardson DR (2011) Cancer Res 71(17):5871–5880

    Article  CAS  PubMed  Google Scholar 

  14. Kalinowski DS, Jansson PJ, Kovacevic Z, Richardson DR (2013) Redox Rep 18(2):48–50

    Article  CAS  PubMed  Google Scholar 

  15. Gaál A, Orgován G, Polgári Z, Réti A, Mihucz VG, Bősze S, Szoboszlai N, Streli C (2014) J Inorg Biochem 130:52–58

    Article  PubMed  Google Scholar 

  16. Hancock CN, Stockwin LH, Han B, Divelbiss RD, Jun JH, Malhotra SV, Hollingshead MG, Newton DL (2011) Free Rad Biol Med 2011, 50(1) 110-121

  17. Stefani C, El-Eisawi Z, Jansson PJ, Kalinowski DS, Richardson DR (2015) J Inorg Biochem 152:20–37

    Article  CAS  PubMed  Google Scholar 

  18. Giles GI (2006) Curr Pharm Design 12(34):4427–4443

    Article  CAS  Google Scholar 

  19. Tew KD, Townsend DM (2011) Curr Opin Chem Biol 15(1):156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kalinina E, Chernov N, Saprin A (2008) Biochemistry- Moscow 73(13):1493–1510

    Article  CAS  PubMed  Google Scholar 

  21. Nolan KA, Zhao H, Faulder PF, Frenkel AD, Timson DJ, Siegel D, Ross D, Burke TR Jr, Stratford IJ, Bryce RA (2007) J Med Chem 50(25):6316–6325

    Article  CAS  PubMed  Google Scholar 

  22. Li R, Bianchet MA, Talalay P, Amzel LM (1995) Proc Natl Acad Sci USA 92(19):8846–8850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Rensburg C, Van Staden A, Anderson R (1993) Cancer Res 53(2):318–323

    PubMed  Google Scholar 

  24. Van Rensburg C, Anderson R, O’Sullivan J (1997) Crit Rev Oncol Hemat 25(1):55–67

    Article  Google Scholar 

  25. Akladios FN, Andrew SD, Parkinson CJ (2015) Bioorg. Med. Chem. 23:3097–3104

    Article  CAS  PubMed  Google Scholar 

  26. Crossley ML, Turner RJ, Hofmann CM, Dreisbach PF, Parker RP (1952) J Am Chem Soc 74(3):578–584

    Article  CAS  Google Scholar 

  27. Kalinowski DS, Yu Y, Sharpe PC, Islam M, Liao Y-T, Lovejoy DB, Kumar N, Bernhardt PV, Richardson DR (2007) J Med Chem 50(15):3716–3729

    Article  CAS  PubMed  Google Scholar 

  28. Richardson DR, Sharpe PC, Lovejoy DB, Senaratne D, Kalinowski DS, Islam M, Bernhardt PV (2006) J Med Chem 49(22):6510–6521

    Article  CAS  PubMed  Google Scholar 

  29. Lovejoy DB, Richardson DR (2002) Blood 100(2):666–676

    Article  CAS  PubMed  Google Scholar 

  30. Brown CA, West DX (2003) Transit Metal Chem 28(2):154–159

    Article  CAS  Google Scholar 

  31. Chou T-C (2010) Cancer Res 70(2):440–446

    Article  CAS  PubMed  Google Scholar 

  32. Tütem E, Apak R, Baykut F (1991) Analyst 116:89–94

    Article  Google Scholar 

  33. Cobine PA, Pierrel F, Bestwick ML, Winge DR (2006) J Biol Chem 281:36552–36559

    Article  CAS  PubMed  Google Scholar 

  34. Samuni Y, Goldstein S, Dean OM, Berk M (2013) Biochim Biophys Acta 1830:4117–4129

    Article  CAS  PubMed  Google Scholar 

  35. Zheng J, Lou JR, Benbrook DM, Hanigan MH, Lind SE, Ding W-Q (2010) Cancer Lett 298:186–194

    Article  CAS  PubMed  Google Scholar 

  36. Saito M, Kobayashi M, Iwabuchi S, Morita Y, Takamura Y, Tamiya E (2004) J Biochem 136(6):813–823

    Article  CAS  PubMed  Google Scholar 

  37. Wlodkowic D, Skommer J, Darzynkiewicz Z (2009) Methods Mol Biol 559: 10.1007/978-1-60327-017-5_2

Download references

Acknowledgements

We wish to acknowledge the contribution of Dr Gregg Maynard for assistance in setting up flow cytometry studies. F Akladios acknowledges the receipt of an Australian Postgraduate Award (APA). CJP wishes to thank the CSU Pharmacy Foundation for a grant partially funding this study. CJP and SDA thank the Kolling Institute (Royal North Shore Hospital) for the donation and characterization of the MCF-7 cell line employed in this study and Dr N Proschogo (University of Sydney) for the provision of mass spectrometry expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Parkinson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akladios, F.N., Andrew, S.D. & Parkinson, C.J. Increased generation of intracellular reactive oxygen species initiates selective cytotoxicity against the MCF-7 cell line resultant from redox active combination therapy using copper–thiosemicarbazone complexes. J Biol Inorg Chem 21, 407–419 (2016). https://doi.org/10.1007/s00775-016-1350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1350-2

Keywords

Navigation