Skip to main content
Log in

Effects of background anionic compounds on the activity of the hammerhead ribozyme in Mg2+-unsaturated solutions

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cellular ribozymes exhibit catalytic activity in media containing large numbers of anionic compounds and macromolecules. In this study, the RNA cleavage activity of the hammerhead ribozyme induced by Mg2+ was investigated using the solutions containing background nucleic acids, small phosphate and carboxylic acid compounds, and neutral polymers. Analysis of the substrate cleavage kinetics showed that the anionic compounds do not affect the ribozyme activity in Mg2+-saturated solutions and there is almost no effect of the anion–Mg2+ complexes formed. On the other hand, the rate of substrate cleavage in Mg2+-unsaturated solutions was reduced under conditions of a high background of anionic compounds found in cells. The extent of the reduction was more with a greater net negative charge, caused by decreased amounts of Mg2+ that could be used for the ribozyme reaction. It was remarkable that background DNA and RNA molecules having phosphodiester bonds reduced the cleavage rate as much as adenosine monophosphates having a charge of −2 when the effects of the same amount of phosphate groups were compared. Greater reductions in rates than those expected from the molecular charge were also observed in the background of fatty acids that form micelles. An addition of poly(ethylene glycol) to the solutions partially restored the ribozyme activity, suggesting a possible role of macromolecular crowding in counteracting the inhibitory effects of background anions on the ribozyme reaction. The results have biological and practical implications with respect to the effects of molecular environment on the efficiency of ion binding to RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Record MT Jr, Zhang W, Anderson CF (1998) Adv Protein Chem 51:281–353

    Article  CAS  PubMed  Google Scholar 

  2. Draper DE, Grilley D, Soto AM (2005) Annu Rev Biophys Biomol Struct 34:221–243

    Article  CAS  PubMed  Google Scholar 

  3. Kuhn A, Kellenberger E (1985) J Bacteriol 163:906–912

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Bloomfield VA, Crothers DM, Tinoco I Jr (2000) Nucleic acids: structures, properties and functions. University Science Books, CA

    Google Scholar 

  5. Meyers RA (2005) Reviews in cell biology and molecular medicine. Wiley-VCH, Weinheim

    Google Scholar 

  6. Woldringh CL, van Driel R (1999) The eukaryotic perspective: similarities and distinctions between pro- and eukaryotes. American Society for Microbiology, Washington, DC

    Google Scholar 

  7. Ellis RJ (2001) Trends Biochem Sci 26:597–604

    Article  CAS  PubMed  Google Scholar 

  8. Wiggins PM (1990) Microbiol Rev 54:432–449

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Grubbs RD (2002) Biometals 15:251–259

    Article  CAS  PubMed  Google Scholar 

  10. Froschauer EM, Kolisek M, Dieterich F, Schweigel M, Schweyen RJ (2004) FEMS Microbiol Lett 237:49–55

    CAS  PubMed  Google Scholar 

  11. Hanna R, Doudna JA (2000) Curr Opin Chem Biol 4:166–170

    Article  CAS  PubMed  Google Scholar 

  12. Bevilacqua PC, Brown TS, Nakano S, Yajima R (2004) Biopolymers 73:90–109

    Article  CAS  PubMed  Google Scholar 

  13. Sigel RK, Pyle AM (2007) Chem Rev 107:97–113

    Article  CAS  PubMed  Google Scholar 

  14. Forster AC, Symons RH (1987) Cell 50:9–16

    Article  CAS  PubMed  Google Scholar 

  15. Bourdeau V, Ferbeyre G, Pageau M, Paquin B, Cedergren R (1999) Nucleic Acids Res 27:4457–4467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Martick M, Horan LH, Noller HF, Scott WG (2008) Nature 454:899–902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Yen L, Svendsen J, Lee JS, Gray JT, Magnier M, Baba T, D’Amato RJ, Mulligan RC (2004) Nature 431:471–476

    Article  CAS  PubMed  Google Scholar 

  18. Citti L, Rainaldi G (2005) Curr Gene Ther 5:11–24

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Nosrati M, Kashani-Sabet M (2008) Methods Mol Biol 405:113–131

    Article  Google Scholar 

  20. Bassi GS, Murchie AI, Walter F, Clegg RM, Lilley DM (1997) EMBO J 16:7481–7489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. O’Rear JL, Wang S, Feig AL, Beigelman L, Uhlenbeck OC, Herschlag D (2001) RNA 7:537–545

    Article  PubMed Central  PubMed  Google Scholar 

  22. Penedo JC, Wilson TJ, Jayasena SD, Khvorova A, Lilley DM (2004) RNA 10:880–888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Boots JL, Canny MD, Azimi E, Pardi A (2008) RNA 14:2212–2222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Martick M, Lee TS, York DM, Scott WG (2008) Chem Biol 15:332–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lee TS, Lopez CS, Giambasu GM, Martick M, Scott WG, York DM (2008) J Am Chem Soc 130:3053–3064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Chi Y, Martick M, Lares M, Kim R, Scott WG, Kim S (2008) PLoS Biol 6:2060–2068

    CAS  Google Scholar 

  27. Zhou HX, Rivas G, Minton AP (2008) Annu Rev Biophys Biomol Struct 37:375–397

    Article  CAS  Google Scholar 

  28. Nakano S, Miyoshi D, Sugimoto N (2014) Chem Rev 114:2733–2758

    Article  CAS  PubMed  Google Scholar 

  29. Nakano S, Karimata HT, Kitagawa Y, Sugimoto N (2009) J Am Chem Soc 131:16881–16888

    Article  CAS  PubMed  Google Scholar 

  30. Cantor CR, Schimmel PR (1980) Biophysical chemistry. W. H. Freeman and Co., NY

    Google Scholar 

  31. Nakano S, Proctor DJ, Bevilacqua PC (2001) Biochemistry 40:12022–12038

    Article  CAS  PubMed  Google Scholar 

  32. McElroy WD, Glass B (1951) Phosphorus metabolism. Johns Hopkins University Press, Baltimore

    Google Scholar 

  33. Dawson RMC, Elliott DC, Elliott WH, Jones KM (1959) Data for biochemical research. Clarendon Press, Oxford

    Google Scholar 

  34. Marky LA, Breslauer KJ (1987) Biopolymers 26:1601–1620

    Article  CAS  PubMed  Google Scholar 

  35. Puglisi JD, Tinoco I Jr (1989) Methods Enzymol 180:304–325

    Article  CAS  PubMed  Google Scholar 

  36. Nashimoto M (2000) Eur J Biochem 267:2738–2745

    Article  CAS  PubMed  Google Scholar 

  37. Hsiao C, Tannenbaum E, Van Deusen H, Hershkovitz E, Perng G, Tannenbaum AR, Williams LD (2009) Complexes of nucleic acids with group I and II cations. RSC Publishing, Cambridge

    Google Scholar 

  38. Martel AE, Smith RM (1989) Critical stability constants. Plenum Press, NY

    Google Scholar 

  39. Speight JG (2005) Lange’s handbook of chemistry, 16 edn. McGraw-Hill, NY

    Google Scholar 

  40. Sander C, Ts’o PO (1971) J Mol Biol 55:1–21

    Article  CAS  PubMed  Google Scholar 

  41. Record MT Jr, Lohman ML, De Haseth P (1976) J Mol Biol 107:145–158

    Article  CAS  PubMed  Google Scholar 

  42. Misra VK, Draper DE (1998) Biopolymers 48:113–135

    Article  CAS  PubMed  Google Scholar 

  43. Nakano S, Kirihata T, Sugimoto N (2008) Chem Commun 700–702

  44. Minton AP (1998) Methods Enzymol 295:127–149

    Article  CAS  PubMed  Google Scholar 

  45. Nakano S, Hirayama H, Miyoshi D, Sugimoto N (2012) J Phys Chem B 116:7406–7415

    Article  CAS  PubMed  Google Scholar 

  46. Nakano S, Kitagawa Y, Miyoshi D, Sugimoto N (2014) FEBS Open Bio 4:643–650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Nakano S, Wu L, Oka H, Karimata HT, Kirihata T, Sato Y, Fujii S, Sakai H, Kuwahara M, Sawai H, Sugimoto N (2008) Mol BioSyst 4:579–588

    Article  CAS  PubMed  Google Scholar 

  48. Asami K, Hanai T, Koizumi N (1976) J Membr Biol 28:169–180

    Article  CAS  PubMed  Google Scholar 

  49. Tanizaki S, Clifford J, Connelly BD, Feig M (2008) Biophys J 94:747–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Cuervo A, Dans PD, Carrascosa JL, Orozco M, Gomila G, Fumagalli L (2014) Proc Natl Acad Sci USA 111:E3624–E3630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Akiko Matsuyama and Junpei Ueno for technical assistance. This work was supported in part by Grants-in-Aid for Scientific Research from JSPS (No. 24550200), MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2009–2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-ichi Nakano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, Si., Kitagawa, Y., Miyoshi, D. et al. Effects of background anionic compounds on the activity of the hammerhead ribozyme in Mg2+-unsaturated solutions. J Biol Inorg Chem 20, 1049–1058 (2015). https://doi.org/10.1007/s00775-015-1286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1286-y

Keywords

Navigation