Skip to main content
Log in

On the interaction of Helicobacter pylori NikR, a Ni(II)-responsive transcription factor, with the urease operator: in solution and in silico studies

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Helicobacter pylori (Hp) is a carcinogen that relies on Ni(II) to survive in the extreme pH conditions of the human guts. The regulation of genes coding for Ni(II) enzymes and proteins is effected by the nickel-responsive transcription factor NikR, composed of a DNA-binding domain (DBD) and a metal-binding domain (MBD). The scope of this study is to obtain the molecular details of the HpNikR interaction with the urease operator OP ureA , in solution. The size of the full-length protein prevents the characterization of the HpNikR–OP ureA interaction using NMR. We thus investigated the two separate domains of HpNikR. The conservation of their oligomeric state was established by multiple-angle light scattering. Isothermal calorimetric titrations indicated that the thermodynamics of Ni(II) binding to the isolated MBD is independent of the presence of the adjacent DBDs. The NMR spectra of the isolated DBD support considerable conservation of its structural properties. The spectral perturbations induced on the DBD by OP ureA provided information useful to calculate a structural model of the HpNikR–OP ureA complex using a docking computational protocol. The NMR assignment of the residues involved in the protein–DNA interaction represents a starting point for the development of drugs potentially able to eradicate H. pylori infections. All evidences so far collected, in this and previous studies, consistently indicate that binding of Ni(II) to the MBD increases the HpNikR–DNA affinity by modulating the dynamic, and not the structural, properties of the protein, suggesting that the formation of a stable complex relies upon an induced fit mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AIC:

Akaike’s Information Criteria

CSP:

Chemical shift perturbations

DBD:

DNA-binding domain

Ec :

Escherichia coli

Hp :

Helicobacter pylori

MALS:

Multiple-angle light scattering

MDB:

Metal-binding domain

NMR:

Nuclear magnetic resonance

Ph :

Pyrococcus horikoshii

SAXS:

Small-angle X-ray scattering

SEC:

Size-exclusion chromatography

References

  1. Mobley HLT, Island MD, Hausinger RP (1995) Microbiol Rev 59:451–480

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Konieczna I, Zarnowiec P, Kwinkowski M, Kolesinska B, Fraczyk J, Kaminski Z, Kaca W (2012) Curr Protein Pept Sci 13:789–806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Callahan BP, Yuan Y, Wolfenden R (2005) J Am Chem Soc 127:10828–10829

    Article  CAS  PubMed  Google Scholar 

  4. Zambelli B, Musiani F, Benini S, Ciurli S (2011) Acc Chem Res 44:520–530

    Article  CAS  PubMed  Google Scholar 

  5. Roesler BM, Rabelo-Gonçalves EMA, Zeitune JMR (2014) Clin Med Insights Gastroenterol 7:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kusters JG, van Vliet AHM, Kuipers E (2006) Clin Microbiol Rev 19:449–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Maroney MJ, Ciurli S (2014) Chem Rev 114:4206–4228

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Zamble DB (2009) Chem Rev 109:4617–4643

    Article  CAS  PubMed  Google Scholar 

  9. Zambelli B, Musiani F, Ciurli S (2012) Met Ions Life Sci 10:135–170

    Article  CAS  PubMed  Google Scholar 

  10. Musiani F, Zambelli B, Bazzani M, Mazzei L, Ciurli S (2015) Metallomics. doi:10.1039/c5mt00072f (in press)

  11. van Vliet AHM, Poppelaars SW, Davies BJ, Stoof J, Bereswill S, Kist M, Penn CW, Kuipers E, Kusters JG (2002) Infect Immun 70:2846–2852

    Article  PubMed Central  PubMed  Google Scholar 

  12. Contreras M, Thiberge JM, Mandrand-Berthelot MA, Labigne A (2003) Mol Microbiol 49:947–963

    Article  CAS  PubMed  Google Scholar 

  13. Wolfram L, Haas E, Bauerfeind P (2006) J Bacteriol 188:1245–1250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Delany I, Ieva R, Soragni A, Hilleringmann M, Rappuoli R, Scarlato V (2005) J Bacteriol 187:7703–7715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Schreiter ER, Sintchak MD, Guo Y, Chivers PT, Sauer RT, Drennan CL (2003) Nat Struct Biol 10:794–799

    Article  CAS  PubMed  Google Scholar 

  16. Schreiter ER, Wang SC, Zamble DB, Drennan CL (2006) Proc Natl Acad Sci USA 103:13676–13681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Phillips CM, Schreiter ER, Stultz CM, Drennan CL (2010) Biochemistry 49:7830–7838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chivers PT, Tahirov TH (2005) J Mol Biol 348:597–607

    Article  CAS  PubMed  Google Scholar 

  19. Dian C, Schauer K, Kapp U, McSweeney SM, Labigne A, Terradot L (2006) J Mol Biol 361:715–730

    Article  CAS  PubMed  Google Scholar 

  20. Bahlawane C, Dian C, Muller C, Round A, Fauquant C, Schauer K, de Reuse H, Terradot L, Michaud-Soret I (2010) Nucleic Acids Res 38:3106–3118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. West AL, St John F, Lopes PE, MacKerell AD Jr, Pozharski E, Michel SL (2010) J Am Chem Soc 132:14447–14456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Benini S, Cianci M, Ciurli S (2011) Dalton Trans 40:7831–7833

    Article  CAS  PubMed  Google Scholar 

  23. West AL, Evans SE, González JM, Carter LG, Tsuruta H, Pozharski E, Michel SLJ (2012) Proc Natl Acad Sci USA 109:5633–5638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Chivers PT, Sauer RT (1999) Protein Sci 8:2494–2500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zambelli B, Danielli A, Romagnoli S, Neyroz P, Ciurli S, Scarlato V (2008) J Mol Biol 383:1129–1143

    Article  CAS  PubMed  Google Scholar 

  26. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Methods Enzymol 185:66–89

    Google Scholar 

  27. Stola M, Musiani F, Mangani S, Turano P, Safarov N, Zambelli B, Ciurli S (2006) Biochemistry 45:6495–6509

    Article  CAS  PubMed  Google Scholar 

  28. Charlwood PA (1957) J Am Chem Soc 79:776–781

    Article  CAS  Google Scholar 

  29. Zambelli B, Bellucci M, Danielli A, Scarlato V, Ciurli S (2007) Chem Commun 35:3649–3651

    Article  Google Scholar 

  30. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) J Biomol NMR 6:277–293

    CAS  PubMed  Google Scholar 

  31. Kay LE, Torchia DA, Bax A (1989) Biochemistry 28:8972–8979

    Article  CAS  PubMed  Google Scholar 

  32. Farrow NA, Muhandiram RR, Singer AU, Pascal SM, Kay CM, Gish GG, Shoelson SE, Pawson TT, Forman-Kay JD, Kay LEL (1994) Biochemistry 33:5984–6003

    Article  CAS  PubMed  Google Scholar 

  33. Williamson RA, Carr MD, Frenkiel TA, Feeney J, Freedman RB (1997) Biochemistry 36:13882–13889

    Article  CAS  PubMed  Google Scholar 

  34. Williamson MP (2013) Prog Nucl Magn Reson Spectrosc 73:1–16

    Article  CAS  PubMed  Google Scholar 

  35. Musiani F, Bertosa B, Magistrato A, Zambelli B, Turano P, Losasso V, Micheletti C, Ciurli S, Carloni P (2010) J Chem Theory Comput 6:3503–3515

    Article  CAS  Google Scholar 

  36. Thompson JD, Higgins DG, Gibson TJ (1994) Nucl Acid Res 22:4673–4680

    Article  CAS  Google Scholar 

  37. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Annu Rev Biophys Biomol Struct 29:291–325

    Article  CAS  PubMed  Google Scholar 

  38. Shen M, Sali A (2006) Protein Sci 15:2507–2524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  40. Wiederstein M, Sippl MJ (2007) Nucleic Acids Res 35:W407–W410

    Article  PubMed Central  PubMed  Google Scholar 

  41. van Dijk M, Bonvin AMJJ (2009) Nucl Acids Res 37:W235–W239

    Article  PubMed Central  PubMed  Google Scholar 

  42. Dominguez C, Boelens R, Bonvin AMJJ (2003) J Am Chem Soc 125:1731–1737

    CAS  Google Scholar 

  43. de Vries SJ, van Dijk AD, Krzeminski M, van Dijk M, Thureau A, Hsu V, Wassenaar T, Bonvin AMJJ (2007) Proteins 69:726–733

    Article  PubMed  Google Scholar 

  44. Agriesti F, Roncarati D, Musiani F, Del Campo C, Iurlaro M, Sparla F, Ciurli S, Danielli A, Scarlato V (2014) Nucleic Acids Res 42:3138–3151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. van Dijk M, van Dijk AD, Hsu V, Boelens R, Bonvin AMJJ (2006) Nucl Acid Res 34:3317–3325

    Article  Google Scholar 

  46. Huang YJ, Acton T, Montelione GT (2014) Methods Mol Biol 1091:3–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) J Biomol NMR 44:213–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lipari G, Szabo A (1982) J Am Chem Soc 104:4559–4570

    Article  CAS  Google Scholar 

  49. Peng JW, Wagner G (1992) J Magn Reson 98:308–332

    CAS  Google Scholar 

  50. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Biochemistry 33:5984–6003

    Article  CAS  PubMed  Google Scholar 

  51. Ishima R, Nagayama K (1995) Biochemistry 34:3162–3171

    Article  CAS  PubMed  Google Scholar 

  52. Farrow NA, Zhang O, Szabo A, Torchia DA, Kay LE (1995) J Biomol NMR 6:153–162

    CAS  PubMed  Google Scholar 

  53. Chivers PT, Sauer RT (2000) J Biol Chem 275:19735–19741

    Article  CAS  PubMed  Google Scholar 

  54. Zambelli B, Danielli A, Romagnoli S, Neyroz P, Ciurli S, Scarlato V (2008) J Mol Biol 383:1129–1143

    Article  CAS  PubMed  Google Scholar 

  55. Tottey S, Harvie DR, Robinson NJ (2005) Acc Chem Res 38:775–783

    Article  CAS  PubMed  Google Scholar 

  56. Giedroc DP, Arunkumar AI (2007) Dalton Trans 29:3107–3120

    Article  PubMed  Google Scholar 

  57. Ma Z, Jacobsen FE, Giedroc DP (2009) Chem Rev 109:4644–4681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Adv Microb Physiol 55(1–79):317

    Google Scholar 

  59. Sachs G, Weeks DL, Wen Y, Marcus EA, Scott DR, Melchers K (2005) Physiology 20:429–438

    Article  CAS  PubMed  Google Scholar 

  60. Wen Y, Marcus EA, Matrubutham U, Gleeson MA, Scott DR, Sachs G (2003) Infect Immun 71:5921–5939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Sachs G, Kraut JA, Wen Y, Feng J, Scott DR (2006) J Membr Biol 212:71–82

    Article  CAS  PubMed  Google Scholar 

  62. Chivers PT, Sauer RT (2002) Chem Biol 9:1141–1148

    Article  CAS  PubMed  Google Scholar 

  63. Benanti EL, Chivers PT (2007) J Biol Chem 282:20365–20375

    Article  CAS  PubMed  Google Scholar 

  64. Abraham LO, Li Y, Zamble DB (2006) J Inorg Biochem 100:1005–1014

    Article  CAS  PubMed  Google Scholar 

  65. Dosanjh NS, Hammerbacher NA, Michel SLJ (2007) Biochemistry 46:2520–2529

    Article  CAS  PubMed  Google Scholar 

  66. Dosanjh NS, West AL, Michel SLJ (2009) Biochemistry 48:527–536

    Article  CAS  PubMed  Google Scholar 

  67. Benanti EL, Chivers PT (2011) J Biol Chem 286:15728–15737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Carrington PE, Chivers PT, Al-Mjeni F, Sauer RT, Maroney MJ (2003) Nat Struct Biol 10:126–130

    Article  CAS  PubMed  Google Scholar 

  69. Krecisz S, Jones MD, Zamble DB (2012) Biochemistry 51:7873–7879

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CERM (Center for Magnetic Resonance, University of Florence) is acknowledged for granting access to the NMR facility. Massimo Lucci and Fabio Calogiuri from CERM are acknowledged for data collection and useful discussions. Research supported by the University of Bologna through the FARB Program (Finanziamenti dell’Alma Mater Studiorum alla Ricerca di Base) “Modulation of protein-DNA interactions with small molecules: novel opportunities for drug design”. L. M., O. D. and F. M. were supported by fellowships from CIRMMP (Consorzio Interuniversitario di Risonanze Magnetiche di Metallo-Proteine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Ciurli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzei, L., Dobrovolska, O., Musiani, F. et al. On the interaction of Helicobacter pylori NikR, a Ni(II)-responsive transcription factor, with the urease operator: in solution and in silico studies. J Biol Inorg Chem 20, 1021–1037 (2015). https://doi.org/10.1007/s00775-015-1284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1284-0

Keywords

Navigation