Skip to main content
Log in

β-Lactam antibiotic-degrading enzymes from non-pathogenic marine organisms: a potential threat to human health

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Metallo-β-lactamases (MBLs) are a family of Zn(II)-dependent enzymes that inactivate most of the commonly used β-lactam antibiotics. They have emerged as a major threat to global healthcare. Recently, we identified two novel MBL-like proteins, Maynooth IMipenemase-1 (MIM-1) and Maynooth IMipenemase-2 (MIM-2), in the marine organisms Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Here, we demonstrate that MIM-1 and MIM-2 have catalytic activities comparable to those of known MBLs, but from the pH dependence of their catalytic parameters it is evident that both enzymes differ with respect to their mechanisms, with MIM-1 preferring alkaline and MIM-2 acidic conditions. Both enzymes require Zn(II) but activity can also be reconstituted with other metal ions including Co(II), Mn(II), Cu(II) and Ca(II). Importantly, the substrate preference of MIM-1 and MIM-2 appears to be influenced by their metal ion composition. Since neither N. pentaromativorans nor S. agarivorans are human pathogens, the precise biological role(s) of MIM-1 and MIM-2 remains to be established. However, due to the similarity of at least some of their in vitro functional properties to those of known MBLs, MIM-1 and MIM-2 may provide essential structural insight that may guide the design of as of yet elusive clinically useful MBL inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fisher JF, Meroueh SO, Mobashery S (2005) Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 105:395–424

    Article  CAS  PubMed  Google Scholar 

  2. Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    Article  CAS  PubMed  Google Scholar 

  3. Bebrone C, Lassaux P, Vercheval L, Sohier JS, Jehaes A, Sauvage E, Galleni M (2010) Current challenges in antimicrobial chemotherapy: focus on β-lactamase inhibition. Drugs 70:651–679

    Article  CAS  PubMed  Google Scholar 

  4. McGeary RP, Schenk G, Guddat LW (2014) The applications of binuclear metallohydrolases in medicine: recent advances in the design and development of novel drug leads for purple acid phosphatases, metallo-beta-lactamases and arginases. Eur J Med Chem 76:132–144

    Article  CAS  PubMed  Google Scholar 

  5. Maltezou HC (2009) Metallo-beta-lactamases in Gram-negative bacteria: introducing the era of pan-resistance? Int J Antimicrob Agents 33:405

    Article  PubMed  Google Scholar 

  6. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51:3471–3484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Livermore DM, Woodford N (2006) The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 14:413–420

    Article  CAS  PubMed  Google Scholar 

  8. Crowder MW, Spencer J, Vila AJ (2006) Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res 39:721–728

    Article  CAS  PubMed  Google Scholar 

  9. Page MI and Badarau A (2008) The mechanisms of catalysis by metallo beta-lactamases. Bioinorg Chem Appl 1–14

  10. Phelan EK, Miraula M, Selleck C, Ollis DL, Schenk G, Mitić N (2014) Metallo-β-lactamases: a major threat to human health. Am J Mol Biol 4:89–104

    Article  CAS  Google Scholar 

  11. Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso M, Schenk G (2014) Catalytic mechanisms of metallohydrolases containing two metal ions. Adv Protein Chem Struct Biol 97:49–81, Elsevier, Oxford

  12. Bebrone C (2007) Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 74:1686–1701

    Article  CAS  PubMed  Google Scholar 

  13. Bellais S, Girlich D, Karim A, Nordmann P (2002) EBR-1, a novel Ambler subclass B1 beta-lactamase from Empedobacter brevis. Antimicrob Agents Chemother 46:3223–3227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yamaguchi Y, Takashio N, Wachino J, Yamagata Y, Arakawa Y, Matsuda K, Kurosaki H (2010) Structure of metallo-beta-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A resolution. J Biochem 147:905–915

    Article  CAS  PubMed  Google Scholar 

  15. Poirel L, Heritier C, Nordmann P (2005) Genetic and biochemical characterization of the chromosome-encoded class B beta-lactamases from Shewanella livingstonensis (SLB-1) and Shewanella frigidimarina (SFB-1). J Antimicrob Chemother 55:680–685

    Article  CAS  PubMed  Google Scholar 

  16. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Poirel L, Hombrouck-Alet C, Freneaux C, Bernabeu S, Nordmann P (2010) Global spread of New Delhi metallo-beta-lactamase 1. Lancet Infect Dis 10:832

    Article  PubMed  Google Scholar 

  18. Zhang H, Hao Q (2011) Crystal structure of NDM-1 reveals a common beta-lactam hydrolysis mechanism. FASEB J 25:2574–2582

    Article  CAS  PubMed  Google Scholar 

  19. Yang H, Aitha M, Marts AR, Hetrick A, Bennett B, Crowder MW, Tierney DL (2014) Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-beta-lactamase NDM-1. J Am Chem Soc 136:7273–7285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Garau G, Bebrone C, Anne C, Galleni M, Frere JM, Dideberg O (2005) A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol 345:785–795

    Article  CAS  PubMed  Google Scholar 

  21. Simona F, Magistrato A, Dal Peraro M, Cavalli A, Vila AJ, Carloni P (2009) Common mechanistic features among metallo-beta-lactamases: a computational study of Aeromonas hydrophila CphA enzyme. J Biol Chem 284:28164–28171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bebrone C, Delbruck H, Kupper MB, Schlomer P, Willmann C, Frere JM, Fischer R, Galleni M, Hoffmann KM (2009) The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site. Antimicrob Agents Chemother 53:4464–4471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Costello A, Periyannan G, Yang KW, Crowder MW, Tierney DL (2006) Site-selective binding of Zn(II) to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. J Biol Inorg Chem 11:351–358

    Article  CAS  PubMed  Google Scholar 

  24. Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, Spencer J (1998) The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution. J Mol Biol 284:125–136

    Article  CAS  PubMed  Google Scholar 

  25. Hu Z, Periyannan G, Bennett B, Crowder MW (2008) Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1. J Biol Inorg Chem 130:14207–14216

    CAS  Google Scholar 

  26. Vella P, Miraula M, Phelan E, Leung EW, Ely F, Ollis DL, McGeary RP, Schenk G, Mitic N (2013) Identification and characterization of an unusual metallo-beta-lactamase from Serratia proteamaculans. J Biol Inorg Chem 18:855–863

    Article  CAS  PubMed  Google Scholar 

  27. Abriata LA, Gonzalez LJ, Llarrull LI, Tomatis PE, Myers WK, Costello AL, Tierney DL, Vila AJ (2008) Engineered mononuclear variants in Bacillus cereus metallo-beta-lactamase BcII are inactive. Biochemistry 47:8590–8599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Schenk G, Mitic N, Gahan LR, Ollis DL, McGeary RP, Guddat LW (2012) Binuclear metallohydrolases: complex mechanistic strategies for a simple chemical reaction. Acc Chem Res 45:1593–1603

    Article  CAS  PubMed  Google Scholar 

  29. Hadler KS, Mitic N, Ely F, Hanson GR, Gahan LR, Larrabee JA, Ollis DL, Schenk G (2009) Structural flexibility enhances the reactivity of the bioremediator glycerophosphodiesterase by fine-tuning its mechanism of hydrolysis. J Am Chem Soc 131:11900–11908

    Article  CAS  PubMed  Google Scholar 

  30. Thomas PW, Zheng M, Wu S, Guo H, Liu D, Xu D, Fast W (2011) Characterization of purified New Delhi metallo-beta-lactamase-1. Biochemistry 50:10102–10113

    Article  CAS  PubMed  Google Scholar 

  31. Riccio ML, Franceschini N, Boschi L, Caravelli B, Cornaglia G, Fontana R, Amicosante G, Rossolini GM (2000) Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother 44:1229–12235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pournaras S, Maniati M, Petinaki E, Tzouvelekis LS, Tsakris A, Legakis NJ, Maniatis AN (2003) Hospital outbreak of multiple clones of Pseudomonas aeruginosa carrying the unrelated metallo-beta-lactamase gene variants blaVIM-2 and blaVIM-4. J Antimicrob Chemother 51:1409–1414

    Article  CAS  PubMed  Google Scholar 

  33. Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J (2009) Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J 3:243–251

    Article  CAS  PubMed  Google Scholar 

  34. Miraula M, Burnton CS, Schenk G, Mitić N (2013) Identification and preliminary characterization of novel B3-type metallo-β-lactamases. Am J Mol Biol 3:198–203

    Article  CAS  Google Scholar 

  35. Shieh WY, Liu TY, Lin SY, Jean WD, Chen JS (2008) Simiduia agarivorans gen. nov., sp. nov., a marine, agarolytic bacterium isolated from shallow coastal water from Keelung, Taiwan. Int J Syst Evol Microbiol 58:895–900

    Article  CAS  PubMed  Google Scholar 

  36. Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ (2004) Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487

    Article  CAS  PubMed  Google Scholar 

  37. Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state enzyme systems. Wiley, New York

    Google Scholar 

  38. Hadler KS, Tanifum EA, Yip SH, Mitic N, Guddat LW, Jackson CJ, Gahan LR, Nguyen K, Carr PD, Ollis DL, Hengge AC, Larrabee JA, Schenk G (2008) Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes. J Biol Inorg Chem 130:14129–14138

    CAS  Google Scholar 

  39. Crowder MW, Walsh TR, Banovic L, Pettit M, Spencer J (1998) Overexpression, purification, and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 42:921–926

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Leiros HK, Borra PS, Brandsdal BO, Edvardsen KS, Spencer J, Walsh TR, Samuelsen O (2012) Crystal structure of the mobile metallo-beta-lactamase AIM-1 from Pseudomonas aeruginosa: insights into antibiotic binding and the role of Gln157. Antimicrob Agents Chemother 56:4341–4353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Gonzalez JM, Medrano Martin FJ, Costello AL, Tierney DL, Vila AJ (2007) The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold. J Mol Biol 373:1141–1156

    Article  CAS  PubMed  Google Scholar 

  42. Paul-Soto R, Bauer R, Frere JM, Galleni M, Meyer-Klaucke W, Nolting H, Rossolini GM, de Seny D, Hernandez-Valladares M, Zeppezauer M, Adolph HW (1999) Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism. J Biol Chem 274:13242–13249

    Article  CAS  PubMed  Google Scholar 

  43. Bebrone C, Anne C, De Vriendt K, Devreese B, Rossolini GM, Van Beeumen J, Frere JM, Galleni M (2005) Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-beta-lactamase by site-directed mutagenesis. J Biol Chem 280:28195–28202

    Article  CAS  PubMed  Google Scholar 

  44. Yanchak MP, Taylor RA, Crowder MW (2000) Mutational analysis of metallo-beta-lactamase CcrA from Bacteroides fragilis. Biochemistry 39:11330–11339

    Article  CAS  PubMed  Google Scholar 

  45. Dong YJ, Bartlam M, Sun L, Zhou YF, Zhang ZP, Zhang CG, Rao Z, Zhang XE (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663

    Article  CAS  PubMed  Google Scholar 

  46. Lienard BM, Garau G, Horsfall L, Karsisiotis AI, Damblon C, Lassaux P, Papamicael C, Roberts GC, Galleni M, Dideberg O, Frere JM, Schofield CJ (2008) Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Org Biomol Chem 6:2282–2294

    Article  CAS  PubMed  Google Scholar 

  47. Vella P, Hussein WM, Leung EW, Clayton D, Ollis DL, Mitic N, Schenk G, McGeary RP (2011) The identification of new metallo-beta-lactamase inhibitor leads from fragment-based screening. Bioorg Med Chem Lett 21:3282–3285

    Article  CAS  PubMed  Google Scholar 

  48. Heinz U, Bauer R, Wommer S, Meyer-Klaucke W, Papamichaels C, Bateson J, Adolph HW (2003) Coordination geometries of metal ions in d- or l-captopril-inhibited metallo-beta-lactamases. J Biol Chem 278:20659–20666

    Article  CAS  PubMed  Google Scholar 

  49. Schimerlik MI, Cleland WW (1977) pH variation of the kinetic parameters and the catalytic mechanism of malic enzyme. Biochemistry 16:576–583

    Article  CAS  PubMed  Google Scholar 

  50. Michalska K, Cielecka-Piontek J, Pajchel G, Tyski S (2013) Determination of biapenem in a medicinal product by micellar electrokinetic chromatography with sweeping in an enhanced electric field. J Chromatogr A 1282:153–160

    Article  CAS  PubMed  Google Scholar 

  51. Alekseev VG (2010) Acid–base properties of penicillins and cephalosporins (a review). Pharm Chem J 44:14–24

    Article  CAS  Google Scholar 

  52. Smith SJ, Casellato A, Hadler KS, Mitic N, Riley MJ, Bortoluzzi AJ, Szpoganicz B, Schenk G, Neves A, Gahan LR (2007) The reaction mechanism of the Ga(III)Zn(II) derivative of uteroferrin and corresponding biomimetics. J Biol Inorg Chem 12:1207–1220

    Article  CAS  PubMed  Google Scholar 

  53. Hu Z, Spadafora LJ, Hajdin CE, Bennett B, Crowder MW (2009) Structure and mechanism of copper- and nickel-substituted analogues of metallo-beta-lactamase L1. Biochemistry 48:2981–2989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Linse S, Helmersson A, Forsen S (1991) Calcium binding to calmodulin and its globular domains. J Biol Chem 266:8050–8054

    CAS  PubMed  Google Scholar 

  55. Permyakov EA, Yarmolenko VV, Kalinichenko LP, Morozova LA, Burstein EA (1981) Calcium binding to alpha-lactalbumin: structural rearrangement and association constant evaluation by means of intrinsic protein fluorescence changes. Biochem Biophys Res Commun 100:191–197

    Article  CAS  PubMed  Google Scholar 

  56. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  57. Brini M, Ottolini D, Cali T, Carafoli E (2013) Calcium in health and disease. Met Ions Life Sci 13:81–137

    Article  PubMed  Google Scholar 

  58. Bertini I (2007) Biological inorganic chemistry: structure and reactivity. University Science Books Sausalito, Sausalito

    Google Scholar 

  59. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a research Grant from Science Foundation Ireland (SFI) under its PIYRA Programme, Grant Number 09/YI/B1756. G. S. acknowledges the award of a Future Fellowship from the Australian research Council (FT120100694) and is grateful to the National Health and Medical Research Council of Australia for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerhard Schenk or Nataša Mitić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miraula, M., Whitaker, J.J., Schenk, G. et al. β-Lactam antibiotic-degrading enzymes from non-pathogenic marine organisms: a potential threat to human health. J Biol Inorg Chem 20, 639–651 (2015). https://doi.org/10.1007/s00775-015-1250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1250-x

Keywords

Navigation