Skip to main content

Advertisement

Log in

Copper-induced structural propensities of the amyloidogenic region of human prion protein

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Transmissible spongiform encephalopathies are associated with the misfolding of the cellular Prion Protein (PrPC) to an abnormal protein isoform, called scrapie prion protein (PrPSc). The structural rearrangement of the fragment of N-terminal domain of the protein spanning residues 91–127 is critical for the observed structural transition. The amyloidogenic domain of the protein encloses two copper-binding sites corresponding to His-96 and His-111 residues that act as anchors for metal ion binding. Previous studies have shown that Cu(II) sequestration by both sites may modulate the peptide’s tendency to aggregation as it inflicts the hairpin-like structure that stabilizes the transition states leading to β-sheet formation. On the other hand, since both His sites differ in their ability to Cu(II) sequestration, with His-111 as a preferred binding site, we found it interesting to test the role of Cu(II) coordination to this single site on the structural properties of amyloidogenic domain. The obtained results reveal that copper binding to His-111 site imposes precise backbone bending and weakens the natural tendency of apo peptide to β-sheet formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Soto C, Castilla J (2004) Nat Med 10(Suppl):S63–S70

    Article  PubMed  Google Scholar 

  2. Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Am J Pathol 122:1–5

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Prusiner SB (1998) Proc Natl Acad Sci 95(25):13363–13383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Prusiner SB (2001) N Engl J Med 344:1516–1526

    Article  CAS  PubMed  Google Scholar 

  5. Van der Kamp MW, Daggett V (2010) Biophys J 99(7):2289–2298

    Article  PubMed Central  PubMed  Google Scholar 

  6. Pan KM, Baldwin M, Prusiner SB (1993) Proc Natl Acad Sci USA 90(23):10962–10966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jackson GS, Hill SF, Collinge J (1999) Biochim Biophys Acta 1431(1):1–13

    Article  CAS  PubMed  Google Scholar 

  8. Grande-Aztatzi R, Rivillas-Acevedo L, Quintanar L, Vela A (2013) J Phys Chem B 117(3):789–799

    Article  CAS  PubMed  Google Scholar 

  9. Prusiner SB (1982) Science 216(4545):136–140

    Article  CAS  PubMed  Google Scholar 

  10. Prusiner SB (1991) Science 252(5012):1515–1522

    Article  CAS  PubMed  Google Scholar 

  11. Prusiner SB (1997) Science 278(5336):245–255

    Article  CAS  PubMed  Google Scholar 

  12. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck TA, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) Nature 390(6661):684–687

    Article  CAS  PubMed  Google Scholar 

  13. Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Coord Chem Rev 256(19–20):2129–2141

    Article  CAS  Google Scholar 

  14. Jackson GS, Murray I, Hosszu LLP, Gibbs N, Waltho JP, Clarke AR, Collinge J (2001) Proc Natl Acad Sci USA 98(15):8531–8535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Chem Rev 106(6):1995–2044

    Article  CAS  PubMed  Google Scholar 

  16. Lehmann S (2002) Curr Opin Chem Biol 6(2):187–192

    Article  CAS  PubMed  Google Scholar 

  17. Brown DR, Kozlowski H (2004) Dalton Trans (13):1907–1917

  18. Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G (2009) Coord Chem Rev 253(21–22):2665–2685

    Article  CAS  Google Scholar 

  19. Millhauser GL (2004) Acc Chem Res 37(2):79–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT (2013) Magn Reson Chem 51:255–268

    Article  CAS  PubMed  Google Scholar 

  21. Migliorini C, Porciatti E, Luczkowski M, Valensin D (2012) Coord Chem Rev 256(1–2):352–368

    Article  CAS  Google Scholar 

  22. Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Biochemistry 41(12):3991–4001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Valensin D, Luczkowski M, Mancini FM, Legowska A, Gaggelli E, Valensin G, Rolka K, Kozlowski H (2004) Dalton Trans 7(9):1284–1293

    Article  Google Scholar 

  24. Garnett AP, Viles JH (2003) J Biol Chem 278(9):6795–6802

    Article  CAS  PubMed  Google Scholar 

  25. Chattopadhyay M, Walter ED, Newell DJ, Jackson PJ, Aronoff-Spencer E, Peisach J, Gerfen GJ, Bennett B, Antholine WE, Millhauser GL (2005) J Am Chem Soc 127(36):12647–12656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kozlowski H, Luczkowski M, Remelli M (2010) Dalton Trans 39:6371–6385

    Article  CAS  PubMed  Google Scholar 

  27. Walter ED, Chattopadhyay M, Millhauser GL (2006) Biochemistry 45(43):13083–13092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Arena G, La Mendola D, Pappalardo G, Sovago I, Rizzarelli E (2012) Coord Chem Rev 256(19–20):2202–2218

    Article  CAS  Google Scholar 

  29. Wells MA, Jelinska C, Hosszu LL, Craven CJ, Clarke AR, Collinge J, Waltho JP, Jackson GS (2006) Biochem J 400(3):501–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gralka E, Valensin D, Porciatti E, Gajda C, Gaggelli E, Valensin G, Kamysz W, Nadolny R, Guerrini R, Bacco D, Remelli M, Kozlowski H (2008) Dalton Trans 38:5207–5219

    Google Scholar 

  31. Jones CE, Abdelraheim SR, Brown DR, Viles JH (2004) J Biol Chem 279(31):32018–32027

    Article  CAS  PubMed  Google Scholar 

  32. Wells MA, Jackson GS, Jones S, Hosszu LL, Craven CJ, Clarke AR, Collinge J, Waltho JP (2006) Biochem J 399(3):435–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Berti F, Gaggelli E, Guerrini R, Janicka A, Kozlowski H, Legowska A, Miecznikowska H, Migliorini C, Pogni R, Remelli M, Rolka K, Valensin D, Valensin G (2007) Chem Eur J 13(7):1991–2001

    Article  CAS  PubMed  Google Scholar 

  34. Klewpatinond M, Viles JH (2007) Biochem J 404(3):393–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Remelli M, Valensin D, Bacco D, Gralka E, Guerrini R, Migliorini C, Kozlowski H (2009) N J Chem 33(11):2300–2310

    Article  CAS  Google Scholar 

  36. Ősz K, Nagy Z, Pappalardo G, Di Natale G, Sanna D, Micera G, Rizzarelli E, Sóvágó I (2007) Chem Eur J 13(25):7129–7143

    Article  PubMed  Google Scholar 

  37. Walter ED, Stevens DJ, Spevacek AR, Visconte MP, Dei Rossi A, Millhauser GL (2009) Curr Protein Pept Sci 10(5):529–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, Peisach J, Millhauser GL (2003) Biochemistry 42(22):6794–6803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Shearer J, Soh P (2007) Inorg Chem 46:710–719

    Article  CAS  PubMed  Google Scholar 

  40. Shearer J, Soh P, Lentz S (2008) J Inorg Biochem 102:2103–2113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rivillas-Acevedo L, Grande-Aztatzi R, Lomeli I, Garcia JE, Barrios E, Teloxa S, Vela A, Quintanar L (2011) 50:1956–1972

  42. Remelli M, Valensin D, Toso L, Gralka E, Guerrini R, Marzola E, Kozłowski H (2012) Metallomics 4(8):794–806

    Article  CAS  PubMed  Google Scholar 

  43. Sovago I, Kallay C, Varnagy K (2012) Coord Chem Rev 256(19–20):2225–2233

    Article  CAS  Google Scholar 

  44. Furlan S, La Penna G (2012) Coord Chem Rev 256(19–20):2234–2244

    Article  CAS  Google Scholar 

  45. Mentler M, Weiss A, Grantner K, Del Pino P, Deluca D, Fiori S, Renner C, Klaucke WM, Moroder L, Bertsch U, Kretzschmar HA, Tavan P, Parak FG (2005) Eur Biophys J 34:97–112

    Article  CAS  PubMed  Google Scholar 

  46. Furlan S, La Penna G, Guerrieri F, Morante S, Rossi GC (2007) J Biol Inorg Chem 12:571–583

    Article  CAS  PubMed  Google Scholar 

  47. Marino T, Russo N, Toscano M (2007) J Phys Chem B 111(3):635–640

    Article  CAS  PubMed  Google Scholar 

  48. Pushie MJ, Rauk A (2003) J Biol Inorg Chem 8:53–65

    Article  CAS  PubMed  Google Scholar 

  49. Riihimäki ES, Martínez JM, Kloo L (2007) J Phys Chem B 111(35):10529–10537

    Article  PubMed  Google Scholar 

  50. Pushie MJ, Vogel HJ (2007) Biophys J 93(11):3762–3774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Pushie MJ, Vogel HJ (2008) Biophys J 95(11):5084–5091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Riihimäki ES, Martínez JM, Kloo L (2008) Phys Chem Chem Phys 10(18):2488–2495

    Article  PubMed  Google Scholar 

  53. Valensin G, Molteni E, Valensin D, Taraszkiewicz M, Kozlowski H (2009) J Phys Chem B 113(11):3277–3279

    Article  CAS  PubMed  Google Scholar 

  54. Pushie MJ, Vogel HJ (2009) J Toxicol Environ Health A 72(17–18):1040–1059

    Article  CAS  PubMed  Google Scholar 

  55. Pushie MJ, Rauk A, Jirik FR, Vogel HJ (2009) Biometals 22(1):159–175

    Article  CAS  PubMed  Google Scholar 

  56. Jobling MF, Stewart LR, White AR, McLean C, Friedhuber A, Maher F, Beyreuther K, Masters CL, Barrow CJ, Collins SJ, Cappai R (1999) J Neurochem 73(4):1557–1565

    Article  CAS  PubMed  Google Scholar 

  57. Selvaggini C, De Gioia L, Cantù L, Ghibaudi E, Diomede L, Passerini F, Forloni G, Bugiani O, Tagliavini F, Salmona M (1993) Biochem Biophys Res Commun 194(3):1380–1386

    Article  CAS  PubMed  Google Scholar 

  58. De Gioia L, Selvaggini C, Ghibaudi E, Diomede L, Bugiani O, Forloni G, Tagliavini F, Salmona M (1994) J Biol Chem 269(11):7859–7862

    PubMed  Google Scholar 

  59. Walsh P, Neudecker P, Sharpe S (2010) J Am Chem Soc 132(22):7684–7695

    Article  CAS  PubMed  Google Scholar 

  60. Güntert P; Mumenthaler C; Wüthrich K (1997) J Mol Biol, p 273

  61. Lindahl E, Hess B, van der Spoel D (2001) J Mol Model 7:306–317

    CAS  Google Scholar 

  62. van der Spoel D, Lindahl E, Hess B, Mark AE, Berendsen HJ (2005) J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  63. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  64. Kaminski GA, Friesner RA (2001) J Phys Chem B 105(28):6474–6487

    Article  CAS  Google Scholar 

  65. Jorgensen WL, Tirado-Rives J (1988) J Am Chem Soc 110(6):1657–1667

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JrT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, G Liu, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill MPW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.02, Gaussian, Inc., Wallingford CT

  67. Rajapandian V, Hakkim V, Subramanian V (2010) J Phys Chem B 114(25):8474–8486

    Article  CAS  PubMed  Google Scholar 

  68. Kabasch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  Google Scholar 

  69. Byler DM, Susi H (1986) Biopolymers 25:469–487

    Article  CAS  PubMed  Google Scholar 

  70. Uversky VN (2014) Front Biosci (Landmark Ed) 19:181–258

    Article  CAS  Google Scholar 

  71. Jiang T, Zhou GR, Zhang YH, Sun PC, Du QM, Zhou P (2012) RSC Adv 2:9106–9113

    Article  CAS  Google Scholar 

  72. Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV (2000) Protein Sci 9:1960–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Botelho HM, Leal SS, Cardoso I, Yanamandra K, Morozova-Roche LA, Fritz G, Gomes CM (2012) J Biol Chem 287(50):42233–42242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Shivu B, Seshadri S, Li J, Oberg KA, Uversky VN, Fink AL (2013) Biochemistry 52(31):5176–5183

    Article  CAS  PubMed  Google Scholar 

  75. He C, Han Y, Zhu L, Deng M, Wang Y (2013) J Phys Chem B 117(36):10475–10483

    Article  CAS  PubMed  Google Scholar 

  76. Pivato M, De Franceschi G, Tosatto L, Frare E, Kumar D, Aioanei D, Brucale M, Tessari I, Bisaglia M, Samori B, de Laureto PP, Bubacco L (2012) PLoS ONE 7(12):e50027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Govaerts C, Wille H, Prusiner SB, Cohen FE (2004) Natl Acad Sci USA 101(22):8342–8347

    Article  CAS  Google Scholar 

  78. Lu X, Wintrode PL, Surewicz WK (2007) Proc Natl Acad Sci USA 104(5):1510–1515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Cobb NJ, Sönnichsen FD, McHaourab H, Surewicz WK (2007) Proc Natl Acad Sci USA 104(48):18946–18951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. DeMarco ML, Daggett V (2004) Proc Natl Acad Sci USA 100(8):2293–2298

    Article  Google Scholar 

  81. Ji HF, Zhang HY (2010) Trends Biochem Sci 35(3):129–134

    Article  CAS  PubMed  Google Scholar 

  82. Campos SRR, Machuquiero M, Baptista AM (2010) J Phys Chem B 114(39):12692–12700

    Article  CAS  PubMed  Google Scholar 

  83. Xu Z, Lazim R, Mei Y, Zhang D (2012) Chem Phys Lett 539–540:239–244

    Article  Google Scholar 

  84. Thukral L, Daidone I, Smith JC (2011) PLoS Comput Biol 7(9):e1002137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Saracino GAA, Villa A, Moro G, Cosentino U, Salmona M (2009) Proteins 75(4):964–976

    Article  CAS  PubMed  Google Scholar 

  86. Gu W, Wang T, Zhu J, Shi Y, Liu H (2003) Biophys Chem 104(1):79–94

    Article  CAS  PubMed  Google Scholar 

  87. Rossetti G, Cong X, Caliandro R, Legname G, Carloni P (2011) J Mol Biol 411(3):700–712

    Article  CAS  PubMed  Google Scholar 

  88. Opazo C, Barría MI, Ruiz FH, Inestrosa NC (2003) Biometals 16(1):91–98

    Article  CAS  PubMed  Google Scholar 

  89. Ruiz FH, Silva E, Inestrosa NC (2000) Biochem Biophys Res Commun 269(2):491–495

    Article  CAS  PubMed  Google Scholar 

  90. Varela-Nallar L, Toledo EM, Chacón MA, Inestrosa NC (2006) Biol Res 39(1):39–44

    Article  CAS  PubMed  Google Scholar 

  91. Varela-Nallar L, González A (2006) Inestrosa NC. Curr Pharm Des 12(20):2587–2595

    Article  CAS  PubMed  Google Scholar 

  92. Di Natale G, Grasso G, Impellizzeri G, La Mendola D, Micera G, Mihala N, Nagy Z, Osz K, Pappalardo G, Rigó V, Rizzarelli E, Sanna D, Sóvágó I (2005) Inorg Chem 44(20):7214–7225

    Article  PubMed  Google Scholar 

  93. Natalello A, Prokorov VV, Tagliavini F, Morbin M, Forloni G, Beeg M, Manzoni C, Colombo L, Gobbi M, Salmona M, Doglia SM (2008) J Mol Biol 381(5):1349–1361

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank PRIN (Programmi di Ricerca di Rilevante Interesse Nazionale) (2010M2JARJ_004), CIRMMP (Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine Paramagnetiche), CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici) and National Science Center (NCN 2011/01/B/ST5/03936) for financial support. We acknowledge the CINECA Awards No. HP10CQ1AYP, 2010, for the availability of high-performance computing resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Valensin.

Additional information

Responsible Editors: Lucia Banci and Claudio Luchinat

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migliorini, C., Sinicropi, A., Kozlowski, H. et al. Copper-induced structural propensities of the amyloidogenic region of human prion protein. J Biol Inorg Chem 19, 635–645 (2014). https://doi.org/10.1007/s00775-014-1132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1132-7

Keywords

Navigation