Skip to main content

Advertisement

Log in

Metastasis prevention with bone-targeted agents: a complex interaction between the microenvironment and tumour biology

  • Invited Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

The use of bone-targeted treatments has transformed the clinical care of many patients with metastatic breast cancer. In addition, due to the profound effects of bisphosphonates and denosumab on bone physiology and the bone microenvironment, the potential of bone-targeted agents to modify the process of metastasis has been studied extensively.

Findings

Many adjuvant trials with bisphosphonates in early breast cancer have been performed. Variable outcomes in terms of disease recurrence have been reported, with any treatment benefits apparently influenced by the age and menopausal status of the patients. Results show that in breast cancer the use of adjuvant bisphosphonates reduce bone metastases and breast-cancer deaths in postmenopausal women. These effects are in addition to the benefits associated with the use of standard adjuvant endocrine, cytotoxic and targeted treatments with prevention of one in six breast-cancer deaths at 10 years. Biomarkers that can predict patient benefit from the use of bone-targeted treatments in the adjuvant setting are being evaluated. Currently, tumour expression of the transcription factor, MAF, seems to be the most promising biomarker; benefits from adjuvant bisphosphonates are seen in the 80% of patients with normal levels of expression irrespective of menopausal status and age, while over expression is associated with a poor prognosis and a higher rate of visceral metastases.

Conclusions

Adjuvant bisphosphonates are now part of standard clinical guidelines for postmenopausal women with early breast cancer at intermediate to high risk of recurrence. MAF testing of primary tumours may improve patient selection for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coleman R, Gnant M, Morgan G, Clezardin P (2012) Effects of bone-targeted agents on cancer progression and mortality. J Nat Cancer Inst 104:1059–1067

    Article  CAS  PubMed  Google Scholar 

  2. Diel IJ, Jaschke A, Solomayer EF, Gollan C, Bastert G, Sohn C, Schuetz F (2008) Adjuvant oral clodronate improves the overall survival of primary breast cancer patients with micrometastases to the bone marrow: a long-term follow-up. Ann Oncol 19:2007–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Powles T, Paterson A, McCloskey E, Schein P, Scheffler B, Tidy A, Ashley S, Smith I, Ottestad L, Kanis J (2006) Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer [ISRCTN83688026]. Breast Cancer Res BCR 8:R13

    Article  PubMed  Google Scholar 

  4. Saarto T, Vehmanen L, Virkkunen P, Blomqvist C (2004) Ten-year follow-up of a randomized controlled trial of adjuvant clodronate treatment in node-positive breast cancer patients. Acta Oncol 43:650–656

    Article  CAS  PubMed  Google Scholar 

  5. Gnant M, Mlineritsch B, Stoeger H, Luschin-Ebengreuth G, Heck D, Menzel C, Jakesz R, Seifert M, Hubalek M, Pristauz G, Bauernhofer T (2011) Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 62-month follow-up from the ABCSG-12 randomised trial. Lancet Oncol 12:631–641

    Article  CAS  PubMed  Google Scholar 

  6. Coleman RE, Marshall H, Cameron D, Dodwell D, Burkinshaw R, Keane M, Gil M, Houston SJ, Grieve RJ, Barrett-Lee PJ, Ritchie D (2011) Breast-cancer adjuvant therapy with zoledronic acid. N Engl J Med 365:1396–1405

    Article  CAS  PubMed  Google Scholar 

  7. Coleman RE, Collinson M, Gregory W, Marshall H, Bell R, Dodwell D, Keane M, Gil M, Barrett-Lee P, Ritchie D, Bowman A (2018) Benefits and risks of adjuvant treatment with zoledronic acid in stage II/III breast cancer. 10 years follow-up of the AZURE randomized clinical trial (BIG 01/04). J Bone Oncol 27:123–135

    Article  Google Scholar 

  8. Coleman R, de Boer R, Eidtmann H, Llombart A, Davidson N, Neven P, Von Minckwitz G, Sleeboom HP, Forbes J, Barrios C, Frassoldati A (2013) Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60-month results. Ann Oncol 24:398–405

    Article  CAS  PubMed  Google Scholar 

  9. Paterson AH, Anderson SJ, Lembersky BC, Fehrenbacher L, Falkson CI, King KM, Weir LM, Brufsky AM, Dakhil S, Lad T, Baez-Diaz L (2012) Oral clodronate for adjuvant treatment of operable breast cancer (National Surgical Adjuvant Breast and Bowel Project protocol B-34): a multicentre, placebo-controlled, randomised trial. Lancet Oncol 13:734–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. von Minckwitz G, Möbus V, Schneeweiss A, Huober J, Thomssen C, Untch M, Jackisch C, Diel IJ, Elling D, Conrad B, Kreienberg R (2013) German adjuvant intergroup node-positive study: a phase III trial to compare oral ibandronate versus observation in patients with high-risk early breast cancer. J Clin Oncol 31:3531–3539

    Article  Google Scholar 

  11. Vliek SB, Noordhoek I, Kranenberg EM-H, Van Rossum AG, Dezentje VO, Jager A, Hokken JW, Putter H, Van Der Velden AW, Hendriks MP, Bakker SD (2022) Daily oral ibandronate with adjuvant endocrine therapy in postmenopausal women with estrogen receptor–positive breast cancer (BOOG 2006–04): randomized phase III TEAM-IIB Trial. J Clin Oncol 40:2934–2945

    Article  CAS  PubMed  Google Scholar 

  12. Perrone F, De Laurentiis M, De Placido S, Orditura M, Cinieri S, Riccardi F, Ribecco AS, Putzu C, Del Mastro L, Rossi E, Tinessa V (2019) Adjuvant zoledronic acid and letrozole plus ovarian function suppression in premenopausal breast cancer: HOBOE phase 3 randomised trial. Eur J Cancer 118:178–186

    Article  CAS  PubMed  Google Scholar 

  13. Gralow JR, Barlow EW, Paterson AHG, M’Iao JL, Lew DL, Stopeck AT, Hayes DF, Hershman DL, Schubert MM, Clemons M, Van Poznak CH (2020) Phase III randomized trial of bisphosphonates as adjuvant therapy in breast cancer: S0307. J Natl Cancer Inst 112:698–707

    Article  PubMed  Google Scholar 

  14. Early Breast Cancer Clinical Trials Collaborative Group (EBCTCG) (2015) Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386:1353–1361

    Article  Google Scholar 

  15. Gnant M, Pfeiler G, Steger GG, Egle D, Greil R, Fitzal F, Wette V, Balic M, Haslbauer F, Melbinger-Zeinitzer E, Bjelic-Radisic V (2019) Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20:339–351

    Article  CAS  PubMed  Google Scholar 

  16. Gnant M, Frantal S, Pfeiler G, Steger GG, Egle D, Greil R, Fitzal F, Wette V, Balic M, Haslbauer F, Melbinger-Zeinitzer E (2022) Long-term outcomes of adjuvant denosumab in breast cancer: fracture reduction and survival results from 3,425 patients in the randomised, double-blind, placebo-controlled ABCSG-18 trial. J Clin Oncol 40:507

    Article  Google Scholar 

  17. Coleman RE, Finkelstein D, Barrios CH, Martin M, Iwata H, Glaspy JA, Zhou Y, Jandial D, Chan A (2020) Adjuvant denosumab in early breast cancer: primary results from the international, multicenter, randomized, phase 3, placebo-controlled D-CARE study. Lancet Oncol 21:60–72

    Article  CAS  PubMed  Google Scholar 

  18. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2022) Aromatase inhibitors versus tamoxifen in premenopausal women with oestrogen receptor-positive early-stage breast cancer treated with ovarian suppression: a patient-level meta-analysis of 7030 women from four randomised trials. Lancet Oncol 23:382–392

    Article  Google Scholar 

  19. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2012) Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379:432–444

    Article  Google Scholar 

  20. Coleman R, Hadji P, Body JJ, Santini D, Chow E, Terpos E, Oudard S, Bruland Ø, Flamen P, Kurth A, Van Poznak C, On behalf of the ESMO Guidelines Committee (2020) Bone health in cancer: ESMO clinical practice guidelines. Ann Oncol 31:1650–1663

    Article  CAS  PubMed  Google Scholar 

  21. Eisen A, Somerfield MR, Accordino MK, Blanchette PS, Clemons MJ, Dhesy-Thind S, Dillmon MS, D’Oronzo S, Fletcher GG, Frank ES, Hallmeyer S (2022) Use of adjuvant bisphosphonates and other bone-modifying agents in breast cancer: ASCO-OH (CCO) guideline update. J Clin Oncol 40:787–800

    Article  CAS  PubMed  Google Scholar 

  22. Coleman R (2023) Daily oral ibandronate with adjuvant endocrine therapy in postmenopausal women with estrogen receptor–positive breast cancer—editorial commentary. Ann Transl Med. https://doi.org/10.21037/atm-2023-3

    Article  Google Scholar 

  23. Friedl TW, Fehm T, Müller V, Lichtenegger W, Blohmer J, Lorenz R, Forstbauer H, Fink V, Bekes I, Huober J, Jückstock J (2021) Prognosis of patients with early breast cancer receiving 5 years vs 2 years of adjuvant bisphosphonate treatment: a phase 3 randomized clinical trial. JAMA Oncol 7:1149–1157

    Article  PubMed  Google Scholar 

  24. Ottewell PD, Wang N, Brown HK, Reeves KJ, Fowles CA, Croucher PI, Eaton CL, Holen I (2014) Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res 20:2922–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. George CN, Canuas-Landero V, Theodoulou E, Muthana M, Wilson C, Ottewell P (2020) Oestrogen and zoledronic acid driven changes to the bone and immune environments: potential mechanisms underlying the differential anti-tumour effects of zoledronic acid in pre- and post-menopausal conditions. J Bone Oncol 15:100317

    Article  Google Scholar 

  26. Pavlovic M, Arnal-Estapé A, Rojo F, Bellmunt A, Tarragona M, Guiu M, Planet E, Garcia-Albéniz X, Morales M, Urosevic J, Gawrzak S (2015) Enhanced MAF oncogene expression and breast cancer bone metastasis. J Natl Cancer Inst 107:djv256

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, Bescós C (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541:41–45

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Lei R, Zhuang X, Zhang N, Pan H, Li G, Hu J, Pan X, Tao Q, Fu D, Xiao J (2014) DLC1-dependent parathyroid hormone-like hormone inhibition suppresses breast cancer bone metastasis. J Clin Invest 124:1646–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salvador F, Llorente A, Gomis RR (2019) From latency to overt bone metastasis in breast cancer: potential for treatment and prevention. J Pathol 249:6–18

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dondossola E, Alexander S, Holzapfel BM, Filippini S, Starbuck MW, Hoffman RM, Navone N, De-Juan-Pardo EM, Logothetis CJ, Hutmacher DW, Friedl P (2018) Intravital microscopy of osteolytic progression and therapy response of cancer lesions in the bone. Sci Transl Med 10:eaao5726

    Article  PubMed  PubMed Central  Google Scholar 

  31. Coleman R, Hall A, Albanell J, Hanby A, Bell R, Cameron D, Dodwell D, Marshall H, Jean-Mairet J, Tercero JC, Rojo F (2017) Effect of MAF amplification on treatment outcomes with adjuvant zoledronic acid in early breast cancer: a secondary analysis of the international, open-label, randomised, controlled, phase 3 AZURE (BIG 01/04) trial. Lancet Oncol 18:1543–1552

    Article  CAS  PubMed  Google Scholar 

  32. Paterson AHG, Lucas PC, Anderson SJ, Mamounas EP, Brufsky A, Baez-Diaz L, King KM, Lad T, Robidoux A, Finnigan M, Sampayo M (2021) MAF amplification and adjuvant clodronate outcomes in early-stage breast cancer in NSABP B-34 and potential impact on clinical practice. JNCI Cancer Spectr 5:pkab054

    Article  PubMed  PubMed Central  Google Scholar 

  33. Coleman R, Paterson A, Gomis R (2022) Impact of MAF selection of patients for adjuvant bisphosphonate therapy and comparison with current clinical guidance. Ann Oncol 33:S152

    Article  Google Scholar 

  34. Blasco MT, Espuny I, Gomis RR (2022) Ecology and evolution of dormant metastasis. Trends in Cancer 8:570–582

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Coleman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, R. Metastasis prevention with bone-targeted agents: a complex interaction between the microenvironment and tumour biology. J Bone Miner Metab 41, 290–300 (2023). https://doi.org/10.1007/s00774-023-01434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01434-x

Keywords

Navigation