Skip to main content

Advertisement

Log in

The association of lumbar disc degeneration with lumbar vertebral trabecular volumetric bone mineral density in an urban population of young and middle-aged community-dwelling Chinese adults: a cross-sectional study

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Lumbar intervertebral disc degeneration (LDD) and osteoporosis (OP) are age-related conditions that induce low back pain and have an impact on quality of life. The relationship between LDD and changes in bone mineral density (BMD) is, however, contentious and ever-changing. The purpose of this study is to investigate the relationship between lumbar vertebral volumetric BMD (vBMD) and LDD in an urban population of young and middle-aged community-dwelling Chinese adults.

Materials and methods

719 participants were recruited from among the subjects enrolled in a 10-year longitudinal study of degeneration of the spine and knee being conducted at the Beijing Jishuitan Hospital. The severity of LDD was graded using the five-grade Pfirrmann classification, and lumbar vertebral vBMD was measured using quantitative computed tomography (QCT). The relationship between the grade of intervertebral disc degeneration and lumbar vertebral vBMD was analyzed, and multiple linear regression was performed to adjust for covariates.

Results

The mean lumbar vBMD decreased as the grade of LDD increased (171.5 g/cm3, 147.8 g/cm3, and 124.3 g/cm3, respectively; P < 0.001). After adjusting for age, a higher LDD stage was associated with a lower mean L2–L4 vBMD, although a statistically significant correlation was observed only in men (standardized coefficient β = − 0.656, P = 0.004). In men, there was a negative correlation between single-vertebra vBMD and degeneration of adjacent intervertebral discs, particularly those involving the L3 vertebra (L2-3 disc: β = − 0.333, P < 0.001, L3-4 disc: β = − 0.398, P < 0.001), as well as the mean grade of the L2-4 discs (β = − 0.448, P < 0.001). However, the L5-S1 disc had a smaller correlation with age than others, and no statistically significant associations with lumbar vBMD were observed in either men (β = − 0.024, P = 0.729) or women (β = − 0.057, P = 0.396).

Conclusion

Our study found that the degree of LDD was negatively associated with lumbar trabecular vBMD, although (excepting the L5-S1 disc), the relationship was statistically significant only in men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang Z, Griffith JF, Leung PC, Lee R (2009) Effect of osteoporosis on morphology and mobility of the lumbar spine. Spine (Phila Pa 1976) 34:E115–E121. https://doi.org/10.1097/BRS.0b013e3181895aca

    Article  PubMed  Google Scholar 

  2. Atalay A, Kozakcioglu M, Cubuk R, Tasali N, Guney S (2009) Degeneration of the lumbar spine and dual-energy X-ray absorptiometry measurements in patients without osteoporosis. Clin Imaging 33:374–378. https://doi.org/10.1016/j.clinimag.2008.12.005

    Article  PubMed  Google Scholar 

  3. Tenne M, McGuigan F, Besjakov J, Gerdhem P, Akesson K (2013) Degenerative changes at the lumbar spine–implications for bone mineral density measurement in elderly women. Osteoporos Int 24:1419–1428. https://doi.org/10.1007/s00198-012-2048-0

    Article  CAS  PubMed  Google Scholar 

  4. Gruber HE, Gordon B, Williams C, James Norton H, Hanley EN Jr (2003) Bone mineral density of lumbar vertebral end plates in the aging male sand rat spine. Spine (Phila Pa 1976) 28:1766–1772. https://doi.org/10.1097/01.BRS.0000083283.69134.A6

    Article  PubMed  Google Scholar 

  5. Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet 393:364–376. https://doi.org/10.1016/S0140-6736(18)32112-3

    Article  CAS  PubMed  Google Scholar 

  6. Griffith JF, Wang YX, Antonio GE, Choi KC, Yu A, Ahuja AT, Leung PC (2007) Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 32:E708–E712. https://doi.org/10.1097/BRS.0b013e31815a59a0

    Article  PubMed  Google Scholar 

  7. Salo S, Leinonen V, Rikkonen T, Vainio P, Marttila J, Honkanen R, Tuppurainen M, Kroger H, Sirola J (2014) Association between bone mineral density and lumbar disc degeneration. Maturitas 79:449–455. https://doi.org/10.1016/j.maturitas.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  8. Pye SR, Reid DM, Adams JE, Silman AJ, O’Neill TW (2006) Radiographic features of lumbar disc degeneration and bone mineral density in men and women. Ann Rheum Dis 65:234–238. https://doi.org/10.1136/ard.2005.038224

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Boyd SK, Battie MC, Yasui Y, Videman T (2011) Is greater lumbar vertebral BMD associated with more disk degeneration? A study using microCT and discography. J Bone Miner Res 26:2785–2791. https://doi.org/10.1002/jbmr.476

    Article  PubMed  Google Scholar 

  10. Wang YX, Kwok AW, Griffith JF, Leung JC, Ma HT, Ahuja AT, Leung PC (2011) Relationship between hip bone mineral density and lumbar disc degeneration: a study in elderly subjects using an eight-level MRI-based disc degeneration grading system. J Magn Reson Imaging 33:916–920. https://doi.org/10.1002/jmri.22518

    Article  PubMed  Google Scholar 

  11. Wang YX, Griffith JF, Ma HT, Kwok AW, Leung JC, Yeung DK, Ahuja AT, Leung PC (2011) Relationship between gender, bone mineral density, and disc degeneration in the lumbar spine: a study in elderly subjects using an eight-level MRI-based disc degeneration grading system. Osteoporos Int 22:91–96. https://doi.org/10.1007/s00198-010-1200-y

    Article  CAS  PubMed  Google Scholar 

  12. Wang YX, Griffith JF, Zeng XJ, Deng M, Kwok AW, Leung JC, Ahuja AT, Kwok T, Leung PC (2013) Prevalence and sex difference of lumbar disc space narrowing in elderly Chinese men and women: osteoporotic fractures in men (Hong Kong) and osteoporotic fractures in women (Hong Kong) studies. Arthritis Rheum 65:1004–1010. https://doi.org/10.1002/art.37857

    Article  PubMed  PubMed Central  Google Scholar 

  13. Castano-Betancourt MC, Oei L, Rivadeneira F, de Schepper EI, Hofman A, Bierma-Zeinstra S, Pols HA, Uitterlinden AG, Van Meurs JB (2013) Association of lumbar disc degeneration with osteoporotic fractures; the Rotterdam study and meta-analysis from systematic review. Bone 57:284–289. https://doi.org/10.1016/j.bone.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  14. Hansson TH, Keller TS, Panjabi MM (1987) A study of the compressive properties of lumbar vertebral trabeculae: effects of tissue characteristics. Spine (Phila Pa 1976) 12:56–62. https://doi.org/10.1097/00007632-198701000-00011

    Article  CAS  PubMed  Google Scholar 

  15. Oishi Y, Shimizu K, Katoh T, Nakao H, Yamaura M, Furuko T, Narusawa K, Nakamura T (2003) Lack of association between lumbar disc degeneration and osteophyte formation in elderly Japanese women with back pain. Bone 32:405–411. https://doi.org/10.1016/s8756-3282(03)00031-0

    Article  CAS  PubMed  Google Scholar 

  16. Agius R, Galea R, Fava S (2016) Bone mineral density and intervertebral disc height in type 2 diabetes. J Diabetes Compl 30:644–650. https://doi.org/10.1016/j.jdiacomp.2016.01.021

    Article  Google Scholar 

  17. Margulies JY, Payzer A, Nyska M, Neuwirth MG, Floman Y, Robin GC (1996) The relationship between degenerative changes and osteoporosis in the lumbar spine. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-199603000-00017

    Article  PubMed  Google Scholar 

  18. Wáng YXJ (2018) Senile osteoporosis is associated with disc degeneration (in Eng). Quant Imaging Med Surg 8:551–556. https://doi.org/10.21037/qims.2018.07.04

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kwok AWL, Wang Y-XJ, Griffith JF, Deng M, Leung JCS, Ahuja AT, Leung PC (2012) Morphological changes of lumbar vertebral bodies and intervertebral discs associated with decrease in bone mineral density of the spine: a cross-sectional study in elderly subjects (in eng). Spine 37:E1415–E1421. https://doi.org/10.1097/BRS.0b013e31826f561e

    Article  PubMed  Google Scholar 

  20. Cheng XG, Nicholson PH, Boonen S, Lowet G, Brys P, Aerssens J, Van der Perre G, Dequeker J (1997) Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound. J Bone Miner Res 12:1721–1728. https://doi.org/10.1359/jbmr.1997.12.10.1721

    Article  CAS  PubMed  Google Scholar 

  21. Muraki S, Yamamoto S, Ishibashi H, Horiuchi T, Hosoi T, Orimo H, Nakamura K (2004) Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women. Osteoporos Int 15:724–728. https://doi.org/10.1007/s00198-004-1600-y

    Article  PubMed  Google Scholar 

  22. Nanjo Y, Morio Y, Nagashima H, Hagino H, Teshima R (2003) Correlation between bone mineral density and intervertebral disk degeneration in pre- and postmenopausal women. J Bone Miner Metab 21:22–27. https://doi.org/10.1007/s007740300004

    Article  PubMed  Google Scholar 

  23. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878. https://doi.org/10.1097/00007632-200109010-00011

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Yin L, Zhao Y, Su Y, Sun W, Chen S, Liu Y, Yang M, Yu A, Guglielmi G, Blake GM, Cheng X, Wu X, Veldhuis-Vlug AG, Engelke K (2020) Muscle density, but not size, correlates well with muscle strength and physical performance. J Am Med Dir Assoc. https://doi.org/10.1016/j.jamda.2020.06.052

    Article  PubMed  PubMed Central  Google Scholar 

  25. Geng J, Wang L, Li Q, Huang P, Liu Y, Blake GM, Tian W, Cheng X (2021) The association of lumbar disc herniation with lumbar volumetric bone mineral density in a cross-sectional Chinese study. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11060938

    Article  PubMed  Google Scholar 

  26. Wang L, Wang W, Xu L, Cheng X, Ma Y, Liu D, Guo Z, Su Y, Wang Q (2013) Relation of visceral and subcutaneous adipose tissue to bone mineral density in Chinese women. Int J Endocrinol 2013:378632. https://doi.org/10.1155/2013/378632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Castro-Mateos I, Hua R, Pozo JM, Lazary A, Frangi AF (2016) Intervertebral disc classification by its degree of degeneration from T2-weighted magnetic resonance images. Eur Spine J 25:2721–2727. https://doi.org/10.1007/s00586-016-4654-6

    Article  PubMed  Google Scholar 

  28. Okano I, Salzmann SN, Jones C, Ortiz Miller C, Shirahata T, Rentenberger C, Shue J, Carrino JA, Sama AA, Cammisa FP, Girardi FP, Hughes AP (2020) The impact of degenerative disc disease on regional volumetric bone mineral density (vBMD) measured by quantitative computed tomography. Spine J 20:181–190. https://doi.org/10.1016/j.spinee.2019.02.017

    Article  PubMed  Google Scholar 

  29. Kaiser J, Allaire B, Fein PM, Lu D, Jarraya M, Guermazi A, Demissie S, Samelson EJ, Bouxsein ML, Morgan EF (2018) Correspondence between bone mineral density and intervertebral disc degeneration across age and sex. Arch Osteoporos 13:123. https://doi.org/10.1007/s11657-018-0538-1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kague E, Turci F, Newman E, Yang Y, Brown KR, Aglan MS, Otaify GA, Temtamy SA, Ruiz-Perez VL, Cross S, Royall CP, Witten PE, Hammond CL (2021) 3D assessment of intervertebral disc degeneration in zebrafish identifies changes in bone density that prime disc disease (in Eng). Bone Res 9:39. https://doi.org/10.1038/s41413-021-00156-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Riggs BL, Khosla S, Melton LJ (2012) Better tools for assessing osteoporosis. J Clin Investig 122:4323–4324. https://doi.org/10.1172/jci66746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang R, Wang L, Lin Y, Yang M, Guo Z, Xia W, Wei J, Yi C, Wu X, Cheng X, Gao X (2019) A novel method for estimating nail-tract bone density for intertrochanteric fractures. J Orthop Transl 18:40–47. https://doi.org/10.1016/j.jot.2018.11.005

    Article  Google Scholar 

  33. Homminga J, Aquarius R, Bulsink VE, Jansen CTJ, Verdonschot N (2012) Can vertebral density changes be explained by intervertebral disc degeneration? Med Eng Phys 34:453–458. https://doi.org/10.1016/j.medengphy.2011.08.003

    Article  PubMed  Google Scholar 

  34. Zhang Y, Zhou Z, Wu C, Zhao D, Wang C, Cheng X, Cai W, Wang L, Duanmu Y, Zhang C, Tian W (2016) Population-stratified analysis of bone mineral density distribution in cervical and lumbar vertebrae of chinese from quantitative computed tomography. Korean J Radiol 17:581–589. https://doi.org/10.3348/kjr.2016.17.5.581

    Article  PubMed  PubMed Central  Google Scholar 

  35. Grams AE, Rehwald R, Bartsch A, Honold S, Freyschlag CF, Knoflach M, Gizewski ER, Glodny B (2016) Correlation between degenerative spine disease and bone marrow density: a retrospective investigation (in Eng). BMC Med Imaging 16:17. https://doi.org/10.1186/s12880-016-0123-2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hartvigsen J, Hancock MJ, Kongsted A, Louw Q, Ferreira ML, Genevay S, Hoy D, Karppinen J, Pransky G, Sieper J, Smeets RJ, Underwood M, Lancet Low Back Pain Series Working G (2018) What low back pain is and why we need to pay attention. Lancet 391:2356–2367. https://doi.org/10.1016/S0140-6736(18)30480-X

    Article  PubMed  Google Scholar 

  37. Wang YXJ (2015) Postmenopausal Chinese women show accelerated lumbar disc degeneration compared with Chinese men (in Eng). J Orthop Transl 3:205–211. https://doi.org/10.1016/j.jot.2015.09.001

    Article  Google Scholar 

  38. Zhou Z, Tian FM, Wang P, Gou Y, Zhang H, Song HP, Wang WY, Zhang L (2015) Alendronate prevents intervertebral disc degeneration adjacent to a lumbar fusion in ovariectomized rats. Spine (Phila Pa 1976) 40:E1073–E1083. https://doi.org/10.1097/BRS.0000000000001092

    Article  PubMed  Google Scholar 

  39. Luo Y, Zhang L, Wang WY, Hu QF, Song HP, Su YL, Zhang YZ (2013) Alendronate retards the progression of lumbar intervertebral disc degeneration in ovariectomized rats. Bone 55:439–448. https://doi.org/10.1016/j.bone.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  40. Tian FM, Yang K, Wang WY, Luo Y, Li SY, Song HP, Zhang YZ, Shen Y, Zhang L (2015) Calcitonin suppresses intervertebral disk degeneration and preserves lumbar vertebral bone mineral density and bone strength in ovariectomized rats. Osteoporos Int 26:2853–2861. https://doi.org/10.1007/s00198-015-3202-2

    Article  CAS  PubMed  Google Scholar 

  41. Liu CC, Tian FM, Zhou Z, Wang P, Gou Y, Zhang H, Wang WY, Shen Y, Zhang YZ, Zhang L (2015) Protective effect of calcitonin on lumbar fusion-induced adjacent-segment disc degeneration in ovariectomized rat. BMC Musculoskelet Disord 16:342. https://doi.org/10.1186/s12891-015-0788-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang YXJ (2022) Several concerns on grading lumbar disc degeneration on MR image with Pfirrmann criteria (in Eng). J Orthop Transl 32:101–102. https://doi.org/10.1016/j.jot.2021.12.003

    Article  Google Scholar 

  43. Haughton V (2006) Imaging intervertebral disc degeneration. J Bone Joint Surg Am 88:15–20. https://doi.org/10.2106/JBJS.F.00010

    Article  PubMed  Google Scholar 

  44. Kalantzopoulos GN, Lundvall F, Checchia S, Lind A, Wragg DS, Fjellvag H, Arstad B (2018) In situ flow MAS NMR spectroscopy and synchrotron PDF analyses of the local response of the bronsted acidic site in SAPO-34 during hydration at elevated temperatures. ChemPhysChem 19:519–528. https://doi.org/10.1002/cphc.201700973

    Article  CAS  PubMed  Google Scholar 

  45. Cheng X, Yuan H, Cheng J, Weng X, Xu H, Gao J, Huang M, Wang YXJ, Wu Y, Xu W, Liu L, Liu H, Huang C, Jin Z, Tian W, Joint Group of Chinese Society of Radiology CMAMRSoCMDAOGoCOABDGoCSo (2020) Chinese expert consensus on the diagnosis of osteoporosis by imaging and bone mineral density. Quant Imaging Med Surg 10:2066–2077. https://doi.org/10.21037/qims-2020-16

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Beijing Hospitals Authority Youth Programme (code: 20200402), National Natural Science Foundation of China (grant no. 81971617; 81771831), Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support (code: ZYLX202107), and Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (code: XMLX201843).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [JG], [XC], [LW], [PH], [QL], [GMB] and [AY]. The first draft of the manuscript was written by [JG], [GMB], [LW], [YL] and [JP], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoguang Cheng.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Consent for publication

Given by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, J., Huang, P., Wang, L. et al. The association of lumbar disc degeneration with lumbar vertebral trabecular volumetric bone mineral density in an urban population of young and middle-aged community-dwelling Chinese adults: a cross-sectional study. J Bone Miner Metab 41, 522–532 (2023). https://doi.org/10.1007/s00774-023-01422-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01422-1

Keywords

Navigation