Skip to main content

Advertisement

Log in

Management of cancer treatment-induced bone loss (CTIBL) in patients with breast cancer or prostate cancer

  • Invited Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Breast cancer and prostate cancer are sex hormone-dependent cancers, and estrogen or androgen suppression therapy is the standard treatment. Cancer treatment-induced bone loss (CTIBL): bone loss and osteoporosis have become important side effects of these therapies. To summarize the current evidences, (1) Endocrine therapy for breast cancer and prostate cancer is associated with a significant decrease in bone mineral density. (2) Aromatase inhibitors (AI) for breast cancer are associated with a significant increase in fractures, and androgen deprivation therapy (ADT) for prostate cancer is likely to be associated with an increase in fractures. (3) Administration of bisphosphonates and denosumab increases bone mass in patients undergoing endocrine therapy for breast cancer. Administration of bisphosphonates, denosumab, and SERMs increased bone mass in patients undergoing ADT therapy for prostate cancer. (4) Bisphosphonates and denosumab reduce fracture risk in patients on AI for breast cancer, and toremifene and denosumab in patients on ADT for prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Waqas K, Lima Ferreira J, Tsourdi E et al (2021) Updated guidance on the management of cancer treatment-induced bone loss (CTIBL) in pre- and postmenopausal women with early-stage breast cancer. J Bone Oncol 28:100355

    Article  PubMed  PubMed Central  Google Scholar 

  2. EBCTCG (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists Collaborative Group. Lancet 351:1451–1467

    Article  Google Scholar 

  3. Hackshaw A, Baum M, Fornander T et al (2009) Long-term effectiveness of adjuvant goserelin in premenopausal women with early breast cancer. J Natl Cancer Inst 101:341–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dowsett M, Cuzick J, Ingle J et al (2010) Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 28:509–518

    Article  CAS  PubMed  Google Scholar 

  5. National Comprehensive Cancer Network. NCCN Guidelines Breast Cancer Version 4.2022 - June 21, 2022. www.nccn.org/professionals/physician_gls/pdf/breast.pdf

  6. Klijn JG, Blamey RW, Boccardo F et al (2001) Combined tamoxifen and luteinizing hormone-releasing hormone (LHRH) agonist versus LHRH agonist alone in premenopausal advanced breast cancer: a meta-analysis of four randomized trials. J Clin Oncol 19:343–353

    Article  CAS  PubMed  Google Scholar 

  7. Smith IE, Dowsett M (2003) Aromatase inhibitors in breast cancer. N Engl J Med 348:2431–2442

    Article  CAS  PubMed  Google Scholar 

  8. Spring LM, Wander SA, Andre F et al (2020) Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future. Lancet 395:817–827

    Article  CAS  PubMed  Google Scholar 

  9. Harbeck N, Rastogi P, Martin M et al (2021) Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: updated efficacy and Ki-67 analysis from the monarchE study. Ann Oncol 32:1571–1581

    Article  CAS  PubMed  Google Scholar 

  10. Powles TJ, Hickish T, Kanis JA et al (1996) Effect of tamoxifen on bone mineral density measured by dual-energy X-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol 14:78–84

    Article  CAS  PubMed  Google Scholar 

  11. Stumpf U, Kostev K, Kyvernitakis J et al (2019) Incidence of fractures in young women with breast cancer—a retrospective cohort study. J Bone Oncol 18:100254

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pagani O, Regan MM, Walley BA et al (2014) Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N Engl J Med 371:107–118

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hadji P (2009) Aromatase inhibitor-associated bone loss in breast cancer patients is distinct from postmenopausal osteoporosis. Crit Rev Oncol Hematol 69:73–82

    Article  PubMed  Google Scholar 

  14. Eastell R, Adams JE, Coleman RE et al (2008) Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol 26:1051–1057

    Article  CAS  PubMed  Google Scholar 

  15. BIG 1-98 Collaborative Group, Mouridsen H, Giobbie-Hurder A et al (2009) Letrozole therapy alone or in sequence with tamoxifen in women with breast cancer. N Engl J Med 361:766–776

    Article  Google Scholar 

  16. Coleman RE, Banks LM, Girgis SI et al (2007) Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the intergroup exemestane study (IES): a randomised controlled study. Lancet Oncol 8:119–127

    Article  CAS  PubMed  Google Scholar 

  17. Amir E, Seruga B, Niraula S et al (2011) Toxicity of adjuvant endocrine therapy in postmenopausal breast cancer patients: a systematic review and meta-analysis. J Natl Cancer Inst 103:1299–1309

    Article  CAS  PubMed  Google Scholar 

  18. Lee YK, Lee EG, Kim HY et al (2020) Osteoporotic fractures of the spine, hip, and other locations after adjuvant endocrine therapy with aromatase inhibitors in breast cancer patients: a meta-analysis. J Korean Med Sci 35:e403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cuzick J, Sestak I, Baum M et al (2010) Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol 11:1135–1141

    Article  CAS  PubMed  Google Scholar 

  20. Goldvaser H, Barnes TA, Šeruga B et al (2018) Toxicity of extended adjuvant therapy with aromatase inhibitors in early breast cancer: a systematic review and meta-analysis. J Natl Cancer Inst 110:31–39

    Article  CAS  Google Scholar 

  21. Sverrisdottir A, Fornander T, Jacobsson H et al (2004) Bone mineral density among premenopausal women with early breast cancer in a randomized trial of adjuvant endocrine therapy. J Clin Oncol 22:3694–3699

    Article  CAS  PubMed  Google Scholar 

  22. Kalder M, Kyvernitakis I, Albert US et al (2015) Effects of zoledronic acid versus placebo on bone mineral density and bone texture analysis assessed by the trabecular bone score in premenopausal women with breast cancer treatment-induced bone loss: results of the ProBONE II substudy. Osteoporos Int 26:353–360

    Article  CAS  PubMed  Google Scholar 

  23. Gnant M, Mlineritsch B, Luschin-Ebengreuth G et al (2008) Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 5-year follow-up of the ABCSG-12 bone-mineral density substudy. Lancet Oncol 9:840–849

    Article  CAS  PubMed  Google Scholar 

  24. Iuliani M, Simonetti S, Ribelli G et al (2022) Biological effects of cyclin-dependent kinase inhibitors ribociclib, palbociclib and abemaciclib on breast cancer bone microenvironment. Int J Mol Sci 23:2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoneda K, Tanji Y, Okishiro M et al (2006) Influence of adjuvant anastrozole on bone mineral density in Japanese postmenopausal breast cancer patients: is there a racial difference? Ann Oncol 17:1175–1176

    Article  CAS  PubMed  Google Scholar 

  26. Aihara T, Suemasu K, Takei H et al (2010) Effects of exemestane, anastrozole and tamoxifen on bone mineral density and bone turnover markers in postmenopausal early breast cancer patients: results of N-SAS BC 04, the TEAM Japan substudy. Oncology 79:376–381

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi S, Iwase T, Kohno N et al (2012) Efficacy of zoledronic acid in postmenopausal Japanese women with early breast cancer receiving adjuvant letrozole: 12-month results. Breast Cancer Res Treat 133:685–693

    Article  CAS  PubMed  Google Scholar 

  28. Mitsiades N, Kaochar S (2021) Androgen receptor signaling inhibitors: post-chemotherapy, pre-chemotherapy and now in castration-sensitive prostate cancer. Endocr Relat Cancer 28:T19–T38

    Article  CAS  PubMed  Google Scholar 

  29. Mohamad NV, Soelaiman IN, Chin KY (2016) A concise review of testosterone and bone health. Clin Interv Aging 11:1317–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Daniell HW, Dunn SR, Ferguson DW et al (2000) Progressive osteoporosis during androgen deprivation therapy for prostate cancer. J Urol 163:181–186

    Article  CAS  PubMed  Google Scholar 

  31. Mittan D, Lee S, Miller E, Perez RC, Basler JW, Bruder JM (2002) Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J Clin Endocrinol Metab 87:3656–3661

    Article  CAS  PubMed  Google Scholar 

  32. Berruti A, Dogliotti L, Terrone C et al (2002) Changes in bone mineral density, lean body mass and fat content as measured by dual energy x-ray absorptiometry in patients with prostate cancer without apparent bone metastases given androgen deprivation therapy. J Urol 167:2361–2367

    Article  PubMed  Google Scholar 

  33. Smith MR, Goode M, Zietman AL et al (2004) Bicalutamide monotherapy versus leuprolide monotherapy for prostate cancer: effects on bone mineral density and body composition. J Clin Oncol 22:2546–2553

    Article  CAS  PubMed  Google Scholar 

  34. Sieber PR, Keiller DL, Kahnoski RJ et al (2004) Bicalutamide 150 mg maintains bone mineral density during monotherapy for localized or locally advanced prostate cancer. J Urol 171:2272–2276

    Article  CAS  PubMed  Google Scholar 

  35. Morote J, Orsola A, Abascal JM et al (2006) Bone mineral density changes in patients with prostate cancer during the first 2 years of androgen suppression. J Urol 175:1679–1683

    Article  CAS  PubMed  Google Scholar 

  36. Kiratli BJ, Srinivas S, Perkash I et al (2001) Progressive decrease in bone density over 10 years of androgen deprivation therapy in patients with prostate cancer. Urology 57:127–132

    Article  CAS  PubMed  Google Scholar 

  37. Shahinian VB, Kuo YF, Freeman JL et al (2005) Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 352:154–164

    Article  CAS  PubMed  Google Scholar 

  38. Wallander M, Axelsson KF, Lundh D et al (2019) Patients with prostate cancer and androgen deprivation therapy have increased risk of fractures-a study from the fractures and fall injuries in the elderly cohort (FRAILCO). Osteoporos Int 30:115–125

    Article  CAS  PubMed  Google Scholar 

  39. Smith MR, Lee WC, Brandman J et al (2005) Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J Clin Oncol 23:7897–7903

    Article  CAS  PubMed  Google Scholar 

  40. Morgans AK, Fan KH, Koyama T et al (2014) Bone complications among prostate cancer survivors: long-term follow-up from the prostate cancer outcomes study. Prostate Cancer Prostatic Dis 17:338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iuliani M, Pantano F, Buttigliero C et al (2015) Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment. Oncotarget 6:12520–12528

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nakajima S, Inoue T, Huang M et al (2020) Does the addition of abiraterone to castration affect the reduction in bone mineral density? In Vivo 34:3291–3299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu J, Movérare-Skrtic S, Börjesson AE et al (2016) Enzalutamide reduces the bone mass in the axial but not the appendicular skeleton in male mice. Endocrinology 157:969–977

    Article  CAS  PubMed  Google Scholar 

  44. Smith MR, Saad F, Chowdhury S et al (2018) Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 378:1408–1418

    Article  CAS  PubMed  Google Scholar 

  45. Fizazi K, Shore N, Tammela TL et al (2019) Darolutamide in nonmetastatic, castration-resistant prostate cancer. N Engl J Med 380:1235–1246

    Article  CAS  PubMed  Google Scholar 

  46. Hussain M, Fizazi K, Saad F et al (2018) Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N Engl J Med 378:2465–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Izumi K, Mizokami A, Sugimoto K et al (2009) Risedronate recovers bone loss in patients with prostate cancer undergoing androgen-deprivation therapy. Urology 73:1342–1346

    Article  PubMed  Google Scholar 

  48. Satoh T, Kimura M, Matsumoto K et al (2009) Single infusion of zoledronic acid to prevent androgen deprivation therapy-induced bone loss in men with hormone-naive prostate carcinoma. Cancer 115:3468–3474

    Article  CAS  PubMed  Google Scholar 

  49. Kanis JA, Johansson H, Oden A et al (2014) Worldwide uptake of FRAX. Arch Osteoporos 9:166

    Article  CAS  PubMed  Google Scholar 

  50. Leslie WD, Morin SN, Lix LM et al (2019) Performance of FRAX in women with breast cancer initiating aromatase inhibitor therapy: a registry-based cohort study. J Bone Miner Res 34:1428–1435

    Article  CAS  PubMed  Google Scholar 

  51. Datta M, Schwartz GG (2012) Calcium and vitamin D supplementation during androgen deprivation therapy for prostate cancer: a critical review. Oncologist 17:1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dalla Via J, Daly RM, Fraser SF (2018) The effect of exercise on bone mineral density in adult cancer survivors: a systematic review and meta-analysis. Osteoporos Int 29:287–303

    Article  CAS  PubMed  Google Scholar 

  53. Saarto T, Blomqvist C, Valimaki M et al (1997) Clodronate improves bone mineral density in post-menopausal breast cancer patients treated with adjuvant antioestrogens. Br J Cancer 75:602–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Delmas PD, Balena R, Confravreux E et al (1997) Bisphosphonate risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: a double-blind, placebo-controlled study. J Clin Oncol 15:955–962

    Article  CAS  PubMed  Google Scholar 

  55. Van Poznak C, Hannon RA, Mackey JR et al (2010) Prevention of aromatase inhibitor–induced bone loss using risedronate: the SABRE trial. J Clin Oncol 28:967–975

    Article  PubMed  Google Scholar 

  56. Greenspan SL, Vujevich KT, Brufsky A et al (2015) Prevention of bone loss with risedronate in breast cancer survivors: a randomized, controlled clinical trial. Osteoporos Int 26:1857–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Markopoulos C, Tzoracoleftherakis E, Polychronis A et al (2010) Management of anastrozole-induced bone loss in breast cancer patients with oral risedronate: results from the ARBI prospective clinical trial. Breast Cancer Res 12:R24

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rhee Y, Song K, Park S et al (2013) Efficacy of a combined alendronate and calcitriol agent (Maxmarvil®) in Korean postmenopausal women with early breast cancer receiving aromatase inhibitor: a double-blind, randomized, placebo-controlled study. Endocr J 60:167–172

    Article  CAS  PubMed  Google Scholar 

  59. Lester JE, Dodwell D, Purohit OP et al (2008) Prevention of anastrozole-induced bone loss with monthly oral ibandronate during adjuvant aromatase inhibitor therapy for breast cancer. Clin Cancer Res 14:6336–6342

    Article  CAS  PubMed  Google Scholar 

  60. Livi L, Scotti V, Desideri I et al (2019) Phase 2 placebo-controlled, single-blind trial to evaluate the impact of oral ibandronate on bone mineral density in osteopenic breast cancer patients receiving adjuvant aromatase inhibitors: 5-year results of the single-centre BONADIUV trial. Eur J Cancer 108:100–110

    Article  CAS  PubMed  Google Scholar 

  61. Brufsky AM, Bosserman LD, Caradonna RR et al (2009) Zoledronic acid effectively prevents aromatase inhibitor-associated bone loss in postmenopausal women with early breast cancer receiving adjuvant letrozole: Z-FAST study 36-month follow-up results. Clin Breast Cancer 9:77–85

    Article  CAS  PubMed  Google Scholar 

  62. Coleman R, de Boer R, Eidtmann H et al (2013) Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60-month results. Ann Oncol 24:398–405

    Article  CAS  PubMed  Google Scholar 

  63. Llombart A, Frassoldati A, Paija O et al (2012) Immediate administration of zoledronic acid reduces aromatase inhibitor-associated bone loss in postmenopausal women with early breast cancer: 12-month analysis of the E-ZO-FAST trial. Clin Breast Cancer 12:40–48

    Article  CAS  PubMed  Google Scholar 

  64. Safra T, Bernstein-Molho R, Greenberg J et al (2011) The protective effect of zoledronic acid on bone loss in postmenopausal women with early breast cancer treated with sequential tamoxifen and letrozole: a prospective, randomized, phase II trial. Oncology 81:298–305

    Article  CAS  PubMed  Google Scholar 

  65. Hines SL, Mincey B, Dentchev T et al (2009) Immediate versus delayed zoledronic acid for prevention of bone loss in postmenopausal women with breast cancer starting letrozole after tamoxifen-N03CC. Breast Cancer Res Treat 117:603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wagner-Johnston ND, Sloan JA, Liu H et al (2015) 5-year follow-up of a randomized controlled trial of immediate versus delayed zoledronic acid for the prevention of bone loss in postmenopausal women with breast cancer starting letrozole after tamoxifen: N03CC (Alliance) trial. Cancer 121:2537–2543

    Article  CAS  PubMed  Google Scholar 

  67. Anagha PP, Sen S (2014) The efficacy of bisphosphonates in preventing aromatase inhibitor induced bone loss for postmenopausal women with early breast cancer: a systematic review and meta-analysis. J Oncol 2014:625060

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ellis GK, Bone HG, Chlebowski R et al (2008) Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol 26:4875–4882

    Article  CAS  PubMed  Google Scholar 

  69. Gnant M, Pfeiler G, Dubsky PC et al (2015) Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 386:433–443

    Article  CAS  PubMed  Google Scholar 

  70. Nakatsukasa K, Koyama H, Ouchi Y et al (2019) Effects of denosumab on bone mineral density in Japanese women with osteoporosis treated with aromatase inhibitors for breast cancer. J Bone Miner Metab 37:301–306

    Article  CAS  PubMed  Google Scholar 

  71. Greenspan SL, Nelson JB, Trump DL et al (2007) Effect of once-weekly oral alendronate on bone loss in men receiving androgen deprivation therapy for prostate cancer: a randomized trial. Ann Intern Med 146:416–424

    Article  PubMed  Google Scholar 

  72. Klotz LH, McNeill IY, Kebabdjian M et al (2013) A phase 3, double-blind, randomised, parallel-group, placebo-controlled study of oral weekly alendronate for the prevention of androgen deprivation bone loss in nonmetastatic prostate cancer: the cancer and osteoporosis research with alendronate and leuprolide (CORAL) study. Eur Urol 63:927–935

    Article  CAS  PubMed  Google Scholar 

  73. Smith MR, McGovern FJ, Zietman AL et al (2001) Pamidronate to prevent bone loss during androgen-deprivation therapy for prostate cancer. N Engl J Med 345:948–955

    Article  CAS  PubMed  Google Scholar 

  74. Choo R, Lukka H, Cheung P et al (2013) Randomized, double-blinded, placebo-controlled, trial of risedronate for the prevention of bone mineral density loss in nonmetastatic prostate cancer patients receiving radiation therapy plus androgen deprivation therapy. Int J Radiat Oncol Biol Phys 85:1239–1245

    Article  CAS  PubMed  Google Scholar 

  75. Smith MR, Eastham J, Gleason DM et al (2003) Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol 169:2008–2012

    Article  CAS  PubMed  Google Scholar 

  76. Michaelson MD, Kaufman DS, Lee H et al (2007) Randomized controlled trial of annual zoledronic acid to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer. J Clin Oncol 25:1038–1042

    Article  CAS  PubMed  Google Scholar 

  77. Ryan CW, Huo D, Demers LM et al (2006) Zoledronic acid initiated during the first year of androgen deprivation therapy increases bone mineral density in patients with prostate cancer. J Urol 176:972–978

    Article  CAS  PubMed  Google Scholar 

  78. Bhoopalam N, Campbell SC, Moritz T et al (2009) Intravenous zoledronic acid to prevent osteoporosis in a veteran population with multiple risk factors for bone loss on androgen deprivation therapy. J Urol 182:2257–2264

    Article  CAS  PubMed  Google Scholar 

  79. Smith MR, Egerdie B, Hernandez Toriz N et al (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361:745–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Smith MR, Fallon MA, Lee H et al (2004) Raloxifene to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer: a randomized controlled trial. J Clin Endocrinol Metab 89:3841–3846

    Article  CAS  PubMed  Google Scholar 

  81. Smith MR, Malkowicz SB, Chu F et al (2008) Toremifene increases bone mineral density in men receiving androgen deprivation therapy for prostate cancer: interim analysis of a multicenter phase 3 clinical study. J Urol 179:152–155

    Article  CAS  PubMed  Google Scholar 

  82. Wilson C, Bell R, Hinsley S et al (2018) Adjuvant zoledronic acid reduces fractures in breast cancer patients; an AZURE (BIG 01/04) study. Eur J Cancer 94:70–78

    Article  CAS  PubMed  Google Scholar 

  83. Valachis A, Polyzos NP, Coleman RE et al (2013) Adjuvant therapy with zoledronic acid in patients with breast cancer: a systematic review and meta-analysis. Oncologist 18:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Serpa Neto A, Tobias-Machado M, Esteves MA et al (2012) Bisphosphonate therapy in patients under androgen deprivation therapy for prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 15:36–44

    Article  CAS  PubMed  Google Scholar 

  85. Smith MR, Morton RA, Barnette KG et al (2010) Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate cancer. J Urol 184:1316–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Caraglia M, Santini D, Marra M et al (2006) Emerging anti-cancer molecular mechanisms of aminobisphosphonates. Endocr Relat Cancer 13:7–26

    Article  CAS  PubMed  Google Scholar 

  87. Gonzalez-Suarez E, Jacob AP, Jones J et al (2010) RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468:103–107

    Article  CAS  PubMed  Google Scholar 

  88. Coleman RE, Marshall H, Cameron D et al (2011) Breast-cancer adjuvant therapy with zoledronic acid. N Engl J Med 365:1396–1405

    Article  CAS  PubMed  Google Scholar 

  89. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2015) Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386:1353–1361

    Article  Google Scholar 

  90. Gralow JR, Barlow WE, Paterson AHG et al (2020) Phase III randomized trial of bisphosphonates as adjuvant therapy in breast cancer: S0307. J Natl Cancer Inst 112:698–707

    Article  PubMed  Google Scholar 

  91. Friedl TWP, Fehm T, Müller V et al (2021) Prognosis of patients with early breast cancer receiving 5 years vs 2 years of adjuvant bisphosphonate treatment: a phase 3 randomized clinical trial. JAMA Oncol 7:1149–1157

    Article  PubMed  Google Scholar 

  92. Coleman R, Finkelstein DM, Barrios C et al (2020) Adjuvant denosumab in early breast cancer (D-CARE): an international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol 21:60–72

    Article  CAS  PubMed  Google Scholar 

  93. Eisen A, Somerfield MR, Accordino MK et al (2022) Use of adjuvant bisphosphonates and other bone-modifying agents in breast cancer: ASCO-OH (CCO) guideline update. J Clin Oncol 40:787–800

    Article  CAS  PubMed  Google Scholar 

  94. Papapetrou PD (2009) Bisphosphonate-associated adverse events. Hormones (Athens) 8:96–110

    Article  PubMed  Google Scholar 

  95. Lewiecki EM (2011) Safety and tolerability of denosumab for the treatment of postmenopausal osteoporosis. Drug Healthc Patient Saf 3:79–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Khan A, Morrison A, Cheung A et al (2016) Osteonecrosis of the jaw (ONJ): diagnosis and management in 2015. Osteoporos Int. 27:853–859

    Article  CAS  PubMed  Google Scholar 

  97. Saad F, Brown JE, Van Poznak C et al (2012) Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol 23:1341–1347

    Article  CAS  PubMed  Google Scholar 

  98. Hillner BE, Ingle JN, Chlebowski RT et al (2003) American society of clinical oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 21:4042–4057

    Article  CAS  PubMed  Google Scholar 

  99. Hadji P, Body JJ, Aapro MS et al (2008) Practical guidance for the management of aromatase inhibitor-associated bone loss. Ann Oncol 19:1407–1416

    Article  CAS  PubMed  Google Scholar 

  100. Coleman R, Hadji P, Body JJ et al (2020) Bone health in cancer: ESMO clinical practice guidelines. Ann Oncol 31:1650–1663

    Article  CAS  PubMed  Google Scholar 

  101. Fukumoto S, Soen S, Taguchi T et al (2020) Management manual for cancer treatment-induced bone loss (CTIBL): position statement of the JSBMR. J Bone Miner Metab 38:141–144

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunji Takahashi.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, S. Management of cancer treatment-induced bone loss (CTIBL) in patients with breast cancer or prostate cancer. J Bone Miner Metab 41, 307–316 (2023). https://doi.org/10.1007/s00774-023-01414-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01414-1

Keywords

Navigation