Skip to main content

Advertisement

Log in

PEG10 counteracts signaling pathways of TGF-β and BMP to regulate growth, motility and invasion of SW1353 chondrosarcoma cells

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Recently, we reported highly active transforming growth factor (TGF)-β and bone morphogenetic protein (BMP) signaling in human chondrosarcoma samples and concurrent downregulation of paternally expressed gene 10 (PEG10). PEG10 expression was suppressed by TGF-β signaling, and PEG10 interfered with the TGF-β and BMP-SMAD pathways in chondrosarcoma cells. However, the roles of PEG10 in bone tumors, including chondrosarcoma, remain unknown. Here, we report that PEG10 promotes SW1353 chondrosarcoma cell growth by preventing TGF-β1-mediated suppression. In contrast, PEG10 knockdown augments the TGF-β1-induced motility of SW1353 cells. Individually, TGF-β1 and PEG10 siRNA increase AKT phosphorylation, whereas an AKT inhibitor, MK2206, mitigates the effect of PEG10 silencing on cell migration. SW1353 cell invasion was enhanced by BMP-6, which was further increased by PEG10 silencing. The effect of siPEG10 was suppressed by inhibitors of matrix metalloproteinase (MMP). BMP-6 induced expression of MMP-1, -3, and -13, and PEG10 lentivirus or PEG10 siRNA downregulated or further upregulated these MMPs, respectively. PEG10 siRNA increased BMP-6-induced phosphorylation of p38 MAPK and AKT, whereas the p38 inhibitor SB203580 and MK2206 diminished SW1353 cell invasion by PEG10 siRNA. SB203580 and MK2206 impeded the enhancing effect of PEG10 siRNA on the BMP-6-induced expression of MMP-1, -3, and -13. Our findings suggest dual functions for PEG10: accelerating cell growth by suppressing TGF-β signaling and inhibiting cell motility and invasion by interfering with TGF-β and BMP signaling via the AKT and p38 pathways, respectively. Thus, PEG10 might be a molecular target for suppressing the aggressive phenotypes of chondrosarcoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T, Ishino F (2006) Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 38:101–106

    Article  CAS  PubMed  Google Scholar 

  2. Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F et al (2015) The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep 12:922–936

    Article  CAS  PubMed  Google Scholar 

  3. Peng W, Fan H, Wu G, Wu J, Feng J (2016) Upregulation of long noncoding RNA PEG10 associates with poor prognosis in diffuse large B cell lymphoma with facilitating tumorigenicity. Clin Exp Med 16:177–182

    Article  CAS  PubMed  Google Scholar 

  4. Kainz B, Shehata M, Bilban M, Kienle D, Heintel D et al (2007) Overexpression of the paternally expressed gene 10 (PEG10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia. Int J Cancer 121:1984–1993

    Article  CAS  PubMed  Google Scholar 

  5. Deng X, Hu Y, Ding Q, Han R, Guo Q, Qin J, Li J, Xiao R, Tian S, Hu W, Zhang Q, Xiong J (2014) PEG10 plays a crucial role in human lung cancer proliferation, progression, prognosis and metastasis. Oncol Rep 32:2159–2167

    Article  CAS  PubMed  Google Scholar 

  6. Liu DC, Yang ZL, Jiang S (2011) Identification of PEG10 and TSG101 as carcinogenesis, progression, and poor-prognosis related biomarkers for gallbladder adenocarcinoma. Pathol Oncol Res 17:859–866

    Article  CAS  PubMed  Google Scholar 

  7. Li CM, Margolin AA, Salas M, Memeo L, Mansukhani M, Hibshoosh H, Szabolcs M, Klinakis A, Tycko B (2006) PEG10 is a c-MYC target gene in cancer cells. Cancer Res 66:665–672

    Article  CAS  PubMed  Google Scholar 

  8. Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, Yamaoka Y, Nakamura Y (2003) Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res 63:3043–3048

    CAS  PubMed  Google Scholar 

  9. Bang H, Ha SY, Hwang SH, Park CK (2015) Expression of PEG10 is associated with poor survival and tumor recurrence in hepatocellular carcinoma. Cancer Res Treat 47:844–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshibayashi H, Okabe H, Satoh S, Hida K, Kawashima K, Hamasu S, Nomura A, Hasegawa S, Ikai I, Sakai Y (2007) SIAH1 causes growth arrest and apoptosis in hepatoma cells through β-catenin degradation-dependent and -independent mechanisms. Oncol Rep 17:549–556

    CAS  PubMed  Google Scholar 

  11. Zhang M, Sui C, Dai B, Shen W, Lu J, Yang J (2017) PEG10 is imperative for TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Oncol Rep 37:510–518

    Article  PubMed  Google Scholar 

  12. Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J, Zhang Q (2016) PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol 48:1933–1942

    Article  CAS  PubMed  Google Scholar 

  13. Ishii S, Yamashita K, Harada H, Ushiku H, Tanaka T, Nishizawa N, Yokoi K, Washio M, Ema A, Mieno H, Moriya H, Hosoda K, Waraya M, Katoh H, Watanabe M (2017) The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget 8:74567–74581

    PubMed  PubMed Central  Google Scholar 

  14. Shigemoto K, Brennan J, Walls E, Watson CJ, Stott D, Rigby PW, Reith AD (2001) Identification and characterisation of a developmentally regulated mammalian gene that utilises-1 programmed ribosomal frameshifting. Nucleic Acids Res 29:4079–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ikushima H, Miyazono K (2010) TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424

    Article  CAS  PubMed  Google Scholar 

  16. Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Βiochem 147:35–51

    CAS  Google Scholar 

  17. Lux A, Beil C, Majety M, Barron S, Gallione CJ, Kuhn HM, Berg JN, Kioschis P, Marchuk DA, Hafner M (2005) Human retroviral gag- and gag-pol-like proteins interact with the transforming growth factor-β receptor activin receptor-like kinase 1. J Biol Chem 280:8482–8493

    Article  CAS  PubMed  Google Scholar 

  18. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810

    Article  CAS  PubMed  Google Scholar 

  19. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 274:27161–27167

    Article  CAS  PubMed  Google Scholar 

  20. Henderson ED, Dahlin DC (1963) Chondrosarcoma of bone—a study of two hundred and eighty-eight cases. J Bone Jt Surg Am 45:1450–1458

    Article  CAS  Google Scholar 

  21. Giuffrida AY, Burgueno JE, Koniaris LG, Gutierrez JC, Duncan R, Scully SP (2009) Chondrosarcoma in the United States (1973 to 2003): an analysis of 2890 cases from the SEER database. J Bone Jt Surg Am 91:1063–1072

    Article  Google Scholar 

  22. Italiano A, Mir O, Cioffi A, Palmerini E, Piperno-Neumann S, Perrin C, Chaigneau L, Penel N, Duffaud F, Kurtz JE, Collard O, Bertucci F, Bompas E, Le Cesne A, Maki RG, Ray Coquard I, Blay JY (2013) Advanced chondrosarcomas: role of chemotherapy and survival. Ann Oncol 24:2916–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moussavi-Harami F, Mollano A, Martin JA, Ayoob A, Domann FE, Gitelis S, Buckwalter JA (2006) Intrinsic radiation resistance in human chondrosarcoma cells. Biochem Biophys Res Commun 346:379–385

    Article  CAS  PubMed  Google Scholar 

  24. Dai X, Ma W, He X, Jha RK (2011) Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit 17:RA177–RA190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Driel M, van Leeuwen JP (2014) Cancer and bone: a complex complex. Arch Biochem Biophys 561:159–166

    Article  CAS  PubMed  Google Scholar 

  26. Boeuf S, Bovee JV, Lehner B, van den Akker B, van Ruler M, Cleton-Jansen AM, Richter W (2012) BMP and TGFβ pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors. BMC Cancer 12:488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Masi L, Malentacchi C, Campanacci D, Franchi A (2002) Transforming growth factor-β isoform and receptor expression in chondrosarcoma of bone. Virchows Arch 440:491–497

    Article  CAS  PubMed  Google Scholar 

  28. Yeh YY, Chiao CC, Kuo WY, Hsiao YC, Chen YJ, Wei YY, Lai TH, Fong YC, Tang CH (2008) TGF-β1 increases motility and αvβ3 integrin up-regulation via PI3K, Akt and NF-κB-dependent pathway in human chondrosarcoma cells. Biochem Pharmacol 75:1292–1301

    Article  CAS  PubMed  Google Scholar 

  29. Hou CH, Hsiao YC, Fong YC, Tang CH (2009) Bone morphogenetic protein-2 enhances the motility of chondrosarcoma cells via activation of matrix metalloproteinase-13. Bone 44:233–242

    Article  CAS  PubMed  Google Scholar 

  30. Shinohara N, Maeda S, Yahiro Y, Sakuma D, Matsuyama K, Imamura K, Kawamura I, Setoguchi T, Ishidou Y, Nagano S, Komiya S (2017) TGF-β signalling and PEG10 are mutually exclusive and inhibitory in chondrosarcoma cells. Sci Rep 7:13494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldring MB, Birkhead JR, Suen LF, Yamin R, Mizuno S, Glowacki J, Arbiser JL, Apperley JF (1994) Interleukin-1 β-modulated gene expression in immortalized human chondrocytes. J Clin Investig 94:2307–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tominaga H, Maeda S, Hayashi M, Takeda S, Akira S, Komiya S, Nakamura T, Akiyama H, Imamura T (2008) CCAAT/enhancer-binding protein β promotes osteoblast differentiation by enhancing Runx2 activity with ATF4. Mol Biol Cell 19:5373–5386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, Kato M (2002) c-myc is a downstream target of the Smad pathway. J Biol Chem 277:854–861

    Article  CAS  PubMed  Google Scholar 

  34. Miyazono K, Miyazawa K (2002) Id: a target of BMP signaling. Sci STKE 2002:pe40

    PubMed  Google Scholar 

  35. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF (1995) Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371:257–261

    Article  CAS  PubMed  Google Scholar 

  37. Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA (2002) Inhibition of transforming growth factor (TGF)-β1-induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64

    Article  CAS  PubMed  Google Scholar 

  38. Pretre V, Wicki A (2017) Inhibition of Akt and other AGC kinases: a target for clinical cancer therapy? Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2017.04.011

    Article  PubMed  Google Scholar 

  39. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  40. Boergermann JH, Kopf J, Yu PB, Knaus P (2010) Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42:1802–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pikul S, McDow Dunham KL, Almstead NG, De B, Natchus MG, Anastasio MV, McPhail SJ, Snider CE, Taiwo YO, Rydel T, Dunaway CM, Gu F, Mieling GE (1998) Discovery of potent, achiral matrix metalloproteinase inhibitors. J Med Chem 41:3568–3571

    Article  CAS  PubMed  Google Scholar 

  42. Engel CK, Pirard B, Schimanski S, Kirsch R, Habermann J, Klingler O, Schlotte V, Weithmann KU, Wendt KU (2005) Structural basis for the highly selective inhibition of MMP-13. Chem Biol 12:181–189

    Article  CAS  PubMed  Google Scholar 

  43. Yuan J, Dutton CM, Scully SP (2005) RNAi mediated MMP-1 silencing inhibits human chondrosarcoma invasion. J Orthop Res 23:1467–1474

    Article  CAS  PubMed  Google Scholar 

  44. Tang CH, Yamamoto A, Lin YT, Fong YC, Tan TW (2010) Involvement of matrix metalloproteinase-3 in CCL5/CCR5 pathway of chondrosarcomas metastasis. Biochem Pharmacol 79:209–217

    Article  CAS  PubMed  Google Scholar 

  45. Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446–2451

    Article  CAS  PubMed  Google Scholar 

  46. Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kahari VM (2002) Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277:32360–32368

    Article  CAS  PubMed  Google Scholar 

  47. Fong YC, Li TM, Wu CM, Hsu SF, Kao ST, Chen RJ, Lin CC, Liu SC, Wu CL, Tang CH (2008) BMP-2 increases migration of human chondrosarcoma cells via PI3K/Akt pathway. J Cell Physiol 217:846–855

    Article  CAS  PubMed  Google Scholar 

  48. Wu MH, Lo JF, Kuo CH, Lin JA, Lin YM, Chen LM, Tsai FJ, Tsai CH, Huang CY, Tang CH (2012) Endothelin-1 promotes MMP-13 production and migration in human chondrosarcoma cells through FAK/PI3K/Akt/mTOR pathways. J Cell Physiol 227:3016–3026

    Article  CAS  PubMed  Google Scholar 

  49. Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364:229–233

    Article  CAS  PubMed  Google Scholar 

  50. Derynck R, Akhurst RJ, Balmain A (2001) TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  CAS  PubMed  Google Scholar 

  51. Ikushima H, Miyazono K (2010) Cellular context-dependent “colors” of transforming growth factor-β signaling. Cancer Sci 101:306–312

    Article  CAS  PubMed  Google Scholar 

  52. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    Article  CAS  PubMed  Google Scholar 

  53. Chen JC, Yang ST, Lin CY, Hsu CJ, Tsai CH, Su JL, Tang CH (2014) BMP-7 enhances cell migration and αvβ3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells. PLoS One 9:e112636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Japan Society for the Promotion of Science (JSPS KAKENHI; 15K10486, 15K10410, 16K10910, 17K10972, 17K10933, 26462307, and 25462343) and The Vehicle Racing Commemorative Foundation. We gratefully acknowledge the technical assistance of Hui Gao. We thank Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Maeda.

Ethics declarations

Statement of human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All authors declare that they have no conflicts of interest regarding the contents of this article.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahiro, Y., Maeda, S., Shinohara, N. et al. PEG10 counteracts signaling pathways of TGF-β and BMP to regulate growth, motility and invasion of SW1353 chondrosarcoma cells. J Bone Miner Metab 37, 441–454 (2019). https://doi.org/10.1007/s00774-018-0946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-018-0946-8

Keywords

Navigation