Skip to main content

Advertisement

Log in

Relationship between melatonin and bone resorption rhythms in premenopausal women

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Although evidence exists for a daily rhythm in bone metabolism, the contribution of factors such as melatonin levels, the light–dark cycle, and the sleep–wake cycle is difficult to differentiate given their highly correlated time courses. To examine these influences on bone resorption, we collected 48-h sequential urine samples under both ambulatory (8-h sleep:16-h wake) and constant routine (CR) (constant wake, posture, nutrition and dim light) conditions from 20 healthy premenopausal women. Urinary 6-sulphatoxymelatonin (aMT6s; ng/h) and the bone resorption marker amino-terminal cross-linked collagen I telopeptide (NTx; bone collagen equivalents nM/h) were assayed and fit by cosinor models to determine significant 24-h rhythms and acrophase. Most participants had significant 24-h aMT6s rhythms during both ambulatory and CR conditions (95 and 85%, respectively), but fewer had significant 24-h NTx rhythms (70 and 70%, respectively). Among individuals with significant rhythms, mean (± SD) aMT6s acrophase times were 3:57 ± 1:50 and 3:43 ± 1:25 h under ambulatory and CR conditions, respectively, and 23:44 ± 5:55 and 3:06 ± 5:15 h, respectively, for NTx. Mean 24-h levels of both aMT6s and NTx were significantly higher during CR compared with ambulatory conditions (p < 0.0001 and p = 0.03, respectively). Menstrual phase (follicular versus luteal) had no impact on aMT6s or NTx timing or 24-h levels. This study confirms an endogenous circadian rhythm in NTx with a night-time peak when measured under CR conditions, but also confirms that environmental factors such as the sleep–wake or light–dark cycles, posture or meal timing affects overall concentrations and peak timing under ambulatory conditions, the significance of which remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakade O, Koyama H, Ariji H, Yajima A, Kaku T (1999) Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J Pineal Res 27:106–110

    Article  CAS  PubMed  Google Scholar 

  2. Ladizesky MG, Cutrera RA, Boggio V, Somoza J, Centrella JM, Mautalen C, Cardinali DP (2001) Effect of melatonin on bone metabolism in ovariectomized rats. Life Sci 70:557–565

    Article  CAS  PubMed  Google Scholar 

  3. Cardinali DP, Ladizesky MG, Boggio V, Cutrera RA, Mautalen C (2003) Melatonin effects on bone: experimental facts and clinical perspectives. J Pineal Res 34:81–87

    Article  CAS  PubMed  Google Scholar 

  4. Satomura K, Tobiume S, Tokuyama R, Yamasaki Y, Kudoh K, Maeda E, Nagayama M (2007) Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res 42:231–239

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ (2010) Scientific basis for the potential use of melatonin in bone diseases: osteoporosis and adolescent idiopathic scoliosis. J Osteoporos 2010:830231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Witt-Enderby PA, Slater JP, Johnson NA, Bondi CD, Dodda BR, Kotlarczyk MP, Clafshenkel WP, Sethi S, Higginbotham S, Rutkowski JL, Gallagher KM, Davis VL (2012) Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J Pineal Res 53:374–384

    Article  CAS  PubMed  Google Scholar 

  7. Radio NM, Doctor JS, Witt-Enderby PA (2006) Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 40:332–342

    Article  CAS  PubMed  Google Scholar 

  8. Roth JA, Kim BG, Lin WL, Cho MI (1999) Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem 274:22041–22047

    Article  CAS  PubMed  Google Scholar 

  9. Sethi S, Radio NM, Kotlarczyk MP, Chen CT, Wei YH, Jockers R, Witt-Enderby PA (2010) Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 49:222–238

    Article  CAS  PubMed  Google Scholar 

  10. Koyama H, Nakade O, Takada Y, Kaku T, Lau KH (2002) Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 17:1219–1229

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki N, Hattori A (2002) Melatonin suppresses osteoclastic and osteoblastic activities in the scales of goldfish. J Pineal Res 33:253–258

    Article  CAS  PubMed  Google Scholar 

  12. Ostrowska Z, Kos-Kudla B, Marek B, Kajdaniuk D (2003) Influence of lighting conditions on daily rhythm of bone metabolism in rats and possible involvement of melatonin and other hormones in this process. Endocr Regul 37:163–174

    CAS  PubMed  Google Scholar 

  13. Ostrowska Z, Kos-Kudla B, Nowak M, Swietochowska E, Marek B, Gorski J, Kajdaniuk D, Wolkowska K (2003) The relationship between bone metabolism, melatonin and other hormones in sham-operated and pinealectomized rats. Endocr Regul 37:211–224

    CAS  PubMed  Google Scholar 

  14. Kotlarczyk MP, Lassila HC, O’Neil CK, D’Amico F, Enderby LT, Witt-Enderby PA, Balk JL (2012) Melatonin osteoporosis prevention study (MOPS): a randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J Pineal Res 52:414–426

    Article  CAS  PubMed  Google Scholar 

  15. Amstrup AK, Sikjaer T, Heickendorff L, Mosekilde L, Rejnmark L (2015) Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial. J Pineal Res 59:221–229

    Article  CAS  PubMed  Google Scholar 

  16. Joseph F, Chan BY, Durham BH, Ahmad AM, Vinjamuri S, Gallagher JA, Vora JP, Fraser WD (2007) The circadian rhythm of osteoprotegerin and its association with parathyroid hormone secretion. J Clin Endocrinol Metab 92:3230–3238

    Article  CAS  PubMed  Google Scholar 

  17. Eastell R, Calvo MS, Burritt MF, Offord KP, Russell RG, Riggs BL (1992) Abnormalities in circadian patterns of bone resorption and renal calcium conservation in type I osteoporosis. J Clin Endocrinol Metab 74:487–494

    CAS  PubMed  Google Scholar 

  18. Berruti A, Dogliotti L, Gorzegno G, Torta M, Tampellini M, Tucci M, Cerutti S, Frezet MM, Stivanello M, Sacchetto G, Angeli A (1999) Differential patterns of bone turnover in relation to bone pain and disease extent in bone in cancer patients with skeletal metastases. Clin Chem 45:1240–1247

    CAS  PubMed  Google Scholar 

  19. Fraser WD, Anderson M, Chesters C, Durham B, Ahmad A, Chattington P, Vora J, Squire C, Diver M (2001) Circadian rhythm studies of serum bone resorption markers: implications for optimal sample timing and clinical utility. In: Eastell R, Baumann M, Hoyle NR, Wieczorek L (eds) Bone markers: biochemical and clinical perspectives. Martin Dunitz, London, pp 107–118

    Google Scholar 

  20. Rejnmark L, Vestergaard P, Heickendorff L, Andreasen F, Mosekilde L (2001) Loop diuretics alter the diurnal rhythm of endogenous parathyroid hormone secretion. A randomized-controlled study on the effects of loop- and thiazide-diuretics on the diurnal rhythms of calcitropic hormones and biochemical bone markers in postmenopausal women. Eur J Clin Invest 31:764–772

    Article  CAS  PubMed  Google Scholar 

  21. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31:57–61

    Article  CAS  PubMed  Google Scholar 

  22. Hassager C, Risteli J, Risteli L, Jensen SB, Christiansen C (1992) Diurnal variation in serum markers of type I collagen synthesis and degradation in healthy premenopausal women. J Bone Miner Res 7:1307–1311

    Article  CAS  PubMed  Google Scholar 

  23. Heshmati HM, Riggs BL, Burritt MF, McAlister CA, Wollan PC, Khosla S (1998) Effects of the circadian variation in serum cortisol on markers of bone turnover and calcium homeostasis in normal postmenopausal women. J Clin Endocrinol Metab 83:751–756

    CAS  PubMed  Google Scholar 

  24. Generali D, Berruti A, Tampellini M, Dovio A, Tedoldi S, Bonardi S, Tucci M, Allevi G, Aguggini S, Milani M, Bottini A, Dogliotti L, Angeli A (2007) The circadian rhythm of biochemical markers of bone resorption is normally synchronized in breast cancer patients with bone lytic metastases independently of tumor load. Bone 40:182–188

    Article  CAS  PubMed  Google Scholar 

  25. Pellegrini GG, Gonzales Chaves MM, Fajardo MA, Ponce GM, Toyos GI, Lifshitz F, Friedman SM, Zeni SN (2012) Salivary bone turnover markers in healthy pre- and postmenopausal women: daily and seasonal rhythm. Clin Oral Investig 16:651–657

    Article  PubMed  Google Scholar 

  26. Duffy JF, Dijk DJ (2002) Getting through to circadian oscillators: why use constant routines? J Biol Rhythms 17:4–13

    Article  PubMed  Google Scholar 

  27. Gooley JJ, Rajaratnam SMW, Brainard GC, Kronauer RE, Czeisler CA, Lockley SW (2010) Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med 2:31ra3

    Article  Google Scholar 

  28. Aldhous ME, Arendt J (1988) Radioimmunoassay for 6-sulphatoxymelatonin in urine using an iodinated tracer. Ann Clin Biochem 25:298–303

    Article  CAS  PubMed  Google Scholar 

  29. Lockley SW, Skene DJ, Arendt J, Tabandeh H, Bird AC, Defrance R (1997) Relationship between melatonin rhythms and visual loss in the blind. J Clin Endocrinol Metab 82:3763–3770

    CAS  PubMed  Google Scholar 

  30. Skene DJ, Lockley SW, James K, Arendt J (1999) Correlation between urinary cortisol and 6-sulphatoxymelatonin rhythms in field studies of blind subjects. Clin Endocrinol (Oxf) 50:715–719

    Article  CAS  Google Scholar 

  31. Gunn PJ, Middleton B, Davies SK, Revell VL, Skene DJ (2016) Sex differences in the circadian profiles of melatonin and cortisol in plasma and urine matrices under constant routine conditions. Chronobiol Int 33:39–50

    Article  CAS  PubMed  Google Scholar 

  32. Ostrowska Z, Kos-Kudla B, Marek B, Swietochowska E, Gorski J (2001) Assessment of the relationship between circadian variations of salivary melatonin levels and type I collagen metabolism in postmenopausal obese women. Neuro Endocrinol Lett 22:121–127

    CAS  PubMed  Google Scholar 

  33. Fuleihan E-H, Klerman EB, Brown E, Czeisler CA (1997) N-Tx diurnal rhythm is truly endogenous. ASBMR Annual Meeting

  34. Buehlmeier J, Frings-Meuthen P, Mohorko N, Lau P, Mazzucco S, Ferretti JL, Biolo G, Pisot R, Simunic B, Rittweger J (2017) Markers of bone metabolism during 14 days of bed rest in young and older men. J Musculoskelet Neuronal Interact 17:399–408

    CAS  PubMed  Google Scholar 

  35. Morgan JL, Zwart SR, Heer M, Ploutz-Snyder R, Ericson K, Smith SM (2012) Bone metabolism and nutritional status during 30-day head-down-tilt bed rest. J Appl Physiol 1985 113:1519–1529

    Article  CAS  PubMed  Google Scholar 

  36. LeBlanc A, Shackelford L, Schneider V (1998) Future human bone research in space. Bone 22:113S–116S

    Article  CAS  PubMed  Google Scholar 

  37. Chua EC, Shui G, Lee IT, Lau P, Tan LC, Yeo SC, Lam BD, Bulchand S, Summers SA, Puvanendran K, Rozen SG, Wenk MR, Gooley JJ (2013) Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc Natl Acad Sci USA 110:14468–14473

    Article  PubMed  Google Scholar 

  38. Rahman SA, Castanon-Cervantes O, Scheer FA, Shea SA, Czeisler CA, Davidson AJ, Lockley SW (2015) Endogenous circadian regulation of pro-inflammatory cytokines and chemokines in the presence of bacterial lipopolysaccharide in humans. Brain Behav Immun 47:4–13

    Article  CAS  PubMed  Google Scholar 

  39. Greenspan SL, Dresner-Pollak R, Parker RA, London D, Ferguson L (1997) Diurnal variation of bone mineral turnover in elderly men and women. Calcif Tissue Int 60:419–423

    Article  CAS  PubMed  Google Scholar 

  40. Lucassen EA, Coomans CP, van Putten M, de Kreij SR, van Genugten JH, Sutorius RP, de Rooij KE, van der Velde M, Verhoeve SL, Smit JW, Löwik CW, Smits HH, Guigas B, Aartsma-Rus AM, Meijer JH (2016) Environmental 24-hr cycles are essential for health. Curr Biol 26:1843–1853

    Article  CAS  Google Scholar 

  41. Quevedo I, Zuniga AM (2010) Low bone mineral density in rotating-shift workers. J Clin Densitom 13:467–469

    Article  PubMed  Google Scholar 

  42. Kim BK, Choi YJ, Chung YS (2013) Other than daytime working is associated with lower bone mineral density: the Korea National Health and Nutrition Examination Survey 2009. Calcif Tissue Int 93:495–501

    Article  CAS  PubMed  Google Scholar 

  43. Feskanich D, Hankinson SE, Schernhammer ES (2009) Nightshift work and fracture risk: the Nurses’ Health Study. Osteoporos Int 20:537–542

    Article  CAS  PubMed  Google Scholar 

  44. Dijk DJ, Neri DF, Wyatt JK, Ronda JM, Riel E, Ritz-De Cecco A, Hughes RJ, Elliott AR, Prisk GK, West JB, Czeisler CA (2001) Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol 281:R1647–R1664

    Article  CAS  PubMed  Google Scholar 

  45. Barger LK, Flynn-Evans EE, Kubey A, Walsh L, Ronda JM, Wang W, Wright KP Jr, Czeisler CA (2014) Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol 13:904–912

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sibonga JD, Spector ER, Johnston SL, Tarver WJ (2015) Evaluating bone loss in ISS astronauts. Aerosp Med Hum Perform 86:A38–A44

    Article  PubMed  Google Scholar 

  47. Cappellesso R, Nicole L, Guido A, Pizzol D (2015) Spaceflight osteoporosis: current state and future perspective. Endocr Regul 49:231–239

    Article  CAS  PubMed  Google Scholar 

  48. Duffy JF, Zitting KM, Chinoy ED (2015) Aging and circadian rhythms. Sleep Med Clin 10:423–434

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang K, Wu Y, Yang Y, Chen J, Zhang D, Hu Y, Liu Z, Xu J, Shen Q, Zhang N, Mao X, Liu C (2015) The associations of bedtime, nocturnal, and daytime sleep duration with bone mineral density in pre- and post-menopausal women. Endocrine 49:538–548

    Article  CAS  PubMed  Google Scholar 

  50. Nishizawa Y, Ohta H, Miura M, Inaba M, Ichimura S, Shiraki M, Takada J, Chaki O, Hagino H, Fujiwara S, Fukunaga M, Miki T, Yoshimura N (2013) Guidelines for the use of bone metabolic markers in the diagnosis and treatment of osteoporosis (2012 edition). J Bone Miner Metab 31:1–15

    Article  CAS  PubMed  Google Scholar 

  51. Wright KP Jr, Gronfier C, Duffy JF, Czeisler CA (2005) Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. J Biol Rhythms 20:168–177

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sletten TL, Vincenzi S, Redman JR, Lockley SW, Rajaratnam SMW (2010) Timing in sleep and its relationship with the endogenous melatonin rhythm. Front Neurol 1:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gooley JJ, Chamberlain K, Smith KA, Khalsa SB, Rajaratnam SM, Van Reen E, Zeitzer JM, Czeisler CA, Lockley SW (2011) Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab 96:E463–E472

    Article  CAS  PubMed  Google Scholar 

  54. Singh R, Singh RK, Mahdi AA, Saxena SP, Cornélissen G, Halberg F (2000) Circadian periodicity of urinary volume, creatinine and 5-hydroxyindole acetic acid excretion in healthy indians. Life Sci 66:209–214

    Article  CAS  PubMed  Google Scholar 

  55. Wisser H, Breuer H (1981) Circadian changes of clinical chemical and endocrinological parameters. J Clin Chem Clin Biochem 19:323–337

    CAS  PubMed  Google Scholar 

  56. Kanabrocki EL, Sothern RB, Sackett-Lundeen L, Ryan MD, Johnson M, Foley S, Dawson S, Ocasio T, McCormick JB, Haus E, Kaplan E, Nemchausky B (2008) Creatinine clearance and blood pressure: a 34-year circadian study. Clin Ter 159:409–417

    CAS  PubMed  Google Scholar 

  57. Kamperis K, Hagstroem S, Radvanska E, Rittig S, Djurhuus JC (2010) Excess diuresis and natriuresis during acute sleep deprivation in healthy adults. Am J Physiol Renal Physiol 299:F404–F411

    Article  CAS  PubMed  Google Scholar 

  58. Arendt J (1995) Melatonin and the mammalian pineal gland. Chapman and Hall, London

    Google Scholar 

  59. Uebelhart D, Schlemmer A, Johansen JS, Gineyts E, Christiansen C, Delmas PD (1991) Effect of menopause and hormone replacement therapy on the urinary excretion of pyridinium cross-links. J Clin Endocrinol Metab 72:367–373

    Article  CAS  PubMed  Google Scholar 

  60. Schlemmer A, Hassager C, Jensen SB, Christiansen C (1992) Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J Clin Endocrinol Metab 74:476–480

    CAS  PubMed  Google Scholar 

  61. de la Piedra C, Traba ML, Dominguez Cabrera C, Sosa Henriquez M (1997) New biochemical markers of bone resorption in the study of postmenopausal osteoporosis. Clin Chim Acta 265:225–234

    Article  PubMed  Google Scholar 

  62. Flynn-Evans EE, Tabandeh H, Skene DJ, Lockley SW (2014) Circadian rhythm disorders and melatonin production in 127 blind women with and without light perception. J Biol Rhythms 29:215–224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MAStH and SAR were supported by a National Heart, Lung and Blood Institute fellowship in the program of training in Sleep, Circadian and Respiratory Neurobiology at Brigham and Women’s Hospital (T32 HL079010). PWE was supported by the Resident Fellow Translational Research Program in the Division of Clinical, Social and Administrative Sciences at the Duquesne University School of Pharmacy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa A. St Hilaire.

Ethics declarations

Conflict of interest

In the last 24 months, MAStH has provided consulting services to The MathWorks Inc., MentalWorkout, and the Cooperative Research Centre for Alertness, Safety and Productivity, Australia. None of these commercial interests are related to the research or topic reported in this article. SAR, JJG, and PWE report no conflicts of interest. SWL has had a number of commercial interests in the last 24 months. None of them are directly related to the research or topic reported in this article; however, in the interests of full disclosure, are outlined below. In the past 2 years (2014–2016), SWL has received consulting fees from the Atlanta Falcons, Atlanta Hawks, Carbon Limiting Technologies Ltd on behalf of PhotonStar LED, Perceptive Advisors, and Serrado Capital; has current consulting contracts with Akili Interactive, Delos Living LLC, Environmental Light Sciences LLC, Focal Point LLC, Headwaters Inc., Hintsa Performance AG, Light Cognitive, OpTerra Energy Services Inc., Pegasus Capital Advisors LP, PlanLED, and Wyle Integrated Science and Engineering; owns equity in iSleep pty, Australia; has received unrestricted equipment gifts from Bioilluminations LLC, Bionetics Corporation, and F. Lux Software LLC; has received royalties from Oxford University Press; has received honoraria plus travel, accommodation or meals for invited seminars, conference presentations or teaching from Estee Lauder, Informa Exhibitions (USGBC), and Lightfair; travel, accommodation and/or meals only (no honoraria) for invited seminars, conference presentations or teaching from FASEB, Lightfair and USGBC. Through Brigham and Women’s Hospital, SWL has ongoing investigator-initiated research Grants from Biological Illuminations LLC and F. Lux Software LLC; has completed service agreements with Rio Tinto Iron Ore and Vanda Pharmaceuticals Inc; and had completed three sponsor-initiated clinical research contracts with Vanda Pharmaceuticals Inc. SWL holds process patents for the use of short-wavelength light for resetting the human circadian pacemaker and improving alertness and performance, and for a novel method to measure sleep, which are assigned to the Brigham and Women’s Hospital per Hospital policy. SWL has also served as a paid expert in arbitrations related to sleep, circadian rhythms and work hours and legal proceedings related to light, sleep and health. SWL is also a Program Leader for the Cooperative Research Centre for Alertness, Safety and Productivity, Australia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 30113 kb)

Supplementary material 2 (TIFF 30113 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

St Hilaire, M.A., Rahman, S.A., Gooley, J.J. et al. Relationship between melatonin and bone resorption rhythms in premenopausal women. J Bone Miner Metab 37, 60–71 (2019). https://doi.org/10.1007/s00774-017-0896-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-017-0896-6

Keywords

Navigation