Skip to main content

Advertisement

Log in

Novel role of CCN3 that maintains the differentiated phenotype of articular cartilage

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Knowledge of the microenvironment of articular cartilage in health and disease is the key to accomplishing fundamental disease-modifying treatments for osteoarthritis. The proteins comprising the CCN Family are matricellular proteins with a remarkable relevance within the context of cartilage metabolism. CCN2 displays a great capability for regenerating articular cartilage, and CCN3 has been shown to activate the expression of genes related to articular chondrocytes and to repress genes related to endochondral ossification in epiphyseal chondrocytes. Moreover, mice lacking CCN3 protein have been shown to display ostearthritic changes in their knee articular cartilage. In this study, we employed a monoiodoacetic acid (MIA)-induced osteoarthritic model to investigate whether osteoarthritic changes in the cartilage are reciprocally accompanied by CCN3 down-regulation and an inducible overexpression system to evaluate the effects of CCN3 on articular chondrocytes in vitro. Finally, we also investigated the effects of exogenous CCN3 in vivo during the early stages of MIA-induced osteoarthritis. We discovered that CCN3 is expressed by articular chondrocytes in normal rat knees, whereas it is rapidly down-regulated in osteoarthritic knees. In vitro, we also discovered that CCN3 increases the proteoglycan accumulation, the gene expression of type II collagen, tenascin-C and lubricin, as well as the protein production of tenascin-C and lubricin in articular chondrocytes. In vivo, it was discovered that exogenous CCN3 increased tidemark integrity and produced an increased production of lubricin protein. The potential utility of CCN3 as a future therapeutic agent and possible strategies to improve its therapeutic functions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B et al (2008) A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316:62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saito T, Kawaguchi H (2010) HIF-2α as a possible therapeutic target of osteoarthritis. Osteoarthritis Cartilage 18:1552–1556

    Article  CAS  PubMed  Google Scholar 

  3. Brigstock DR (2003) The CCN family: a new stimulus package. J Endocrino 178:169–175

    Article  CAS  Google Scholar 

  4. Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62–64

    Article  CAS  PubMed  Google Scholar 

  5. Perbal B, Takigawa M (eds) (2005) CCN proteins–a new family of cell growth and differentiation regulators. Imperial College Press, London, pp 1–311

    Google Scholar 

  6. Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41:771–783

    Article  CAS  PubMed  Google Scholar 

  7. Kubota S, Takigawa M (2013) The CCN family acting throughout the body: recent research developments. Biomol Concepts 4:477–494

    Article  CAS  PubMed  Google Scholar 

  8. Kawaki H, Kubota S, Suzuki A, Lazar N, Yamada N et al (2008) Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J Bone Miner Res 23:1751–1764

    Article  CAS  PubMed  Google Scholar 

  9. Nishida T, Kubota S, Kojima S, Kuboki T, Nakao K et al (2004) Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J Bone Miner Res 19:1308–1319

    Article  CAS  PubMed  Google Scholar 

  10. Abd El Kader T, Kubota S, Nishida T, Hattori T, Aoyama E et al (2014) The regenerative effects of CCN2 independent modules on chondrocytes in vitro and osteoarthritis models in vivo. Bone 59:180–188

    Article  CAS  PubMed  Google Scholar 

  11. Janune D, Kubota S, Nishida T, Kawaki H, Perbal B et al (2011) Novel effects of CCN3 that may direct the differentiation of chondrocytes. FEBS Lett 585:3033–3040

    Article  CAS  PubMed  Google Scholar 

  12. Pacifici M, Iwamoto M, Golden EB, Leatherman JL, Lee YS et al (1993) Tenascin is associated with articular cartilage development. Dev Dyn 198:123–134

    Article  CAS  PubMed  Google Scholar 

  13. Pacifici M (1995) Tenascin-C and the development of articular cartilage. Matrix Biol 14:689–698

    Article  CAS  PubMed  Google Scholar 

  14. Roddy KA, Boulter CA (2015) Targeted mutation of NOV/CCN3 in mice disrupts joint homeostasis and causes osteoarthritis-like disease. Osteoarthritis Cartilage 24:607–615

    Article  Google Scholar 

  15. Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E et al (1989) Transposon mutagenesis of baculoviruses: analysis of Thrichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169

    Article  CAS  PubMed  Google Scholar 

  16. Fraser MJ, Cary L, Boonvisudhi K, Wang HG (1995) Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as target DNA. Virology 211:397–407

    Article  CAS  PubMed  Google Scholar 

  17. Weber K, Bartsch U, Stocking C, Fehse B (2008) A multicolor panel of novel lentiviral “gene ontology” (LeGO) vectors for functional gene analysis. Mol Ther 16:698–706

    Article  CAS  PubMed  Google Scholar 

  18. Abd El Kader T, Kubota S, Janune D et al (2013) Anti-fibrotic effect of CCN3 accompanied by altered gene expression profile of the CCN family. J Cell Commun Signal 7:11–18

    Article  PubMed  Google Scholar 

  19. Tabata Y, Nagano A, Muniruzzaman M, Ikada Y (1998) In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials 19:1781–1789

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto M, Tabata Y, Hong L, Miyamoto S, Hashimoto N et al (2000) Bone regeneration by transforming growth factor beta1 released from a biodegradable hydrogel. J Control Release 64:133–142

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Michael IP, Zhou D, Nagy A, Rini JM (2013) Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc Natl Acad Sci USA 110:5004–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jay GD, Waller KA (2014) The biology of lubricin: near frictionless joint motion. Matrix Biol 39:17–24

    Article  CAS  PubMed  Google Scholar 

  23. Okamura N, Hasegawa M, Nakoshi Y, Iino T, Sudo A et al (2010) Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthritis Cartilage 18:839–848

    Article  CAS  PubMed  Google Scholar 

  24. von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G et al (1992) Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum 35:806–811

    Article  PubMed  Google Scholar 

  25. Kempson G. (1980) The mechanical properties of articular cartilage. In: Sokoloff L (ed.) The Joints and Synovial Fluid. Academic Press Inc. Volume 2., New York, USA, p 238–239

  26. Schmidt MB, Mow VC, Chun LE, Eyre DR (1990) Effects of proteoglycan extraction on the tensile behaviour of articular cartilage. J Orthop Res 8:353–363

    Article  CAS  PubMed  Google Scholar 

  27. Chevalier X, Groult N, Larget-Piet B, Zardi L, Hornebeck W (1994) Tenascin distribution in articular cartilage from normal subjects and from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 37:1013–1022

    Article  CAS  PubMed  Google Scholar 

  28. Chockalingam PS, Glasson SS, Lohmander LS (2013) Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation. Osteoarthritis Cartilage 21:339–345

    Article  CAS  PubMed  Google Scholar 

  29. Ikemura S, Hasegawa M, Iino T, Miyamoto K, Imanaka-Yoshida K, Yoshida T, Sudo A (2015) Effect of tenascine-C on the repair of full-thickness osteochondral defects of articular cartilage in rabbits. J Orthop Res 33:567–571

    Article  Google Scholar 

  30. Kawaguchi H (2008) Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells 25:1–6

    CAS  PubMed  Google Scholar 

  31. Jay GD, Torres JR, Rhee DK, Helminen HJ, Hytinnen MM et al (2007) Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum 56:3662–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koyama E, Saunders C, Salhab I, Decker RS, Chen I et al (2014) Lubricin is required for the structural integrity and post-natal maintenance of TMJ. J Dent Res 93:663–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hill A, Duran J, Purcell P (2014) Lubricin protects the temporomandibular joint surfaces from degeneration. PLoS ONE 9(9):e106497

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kosinska MK, Ludwig TE, Liebisch G, Zhang R, Siebert HC et al (2015) Articular joint lubricants during osteoarthritis and rheumatoid arthritis display altered levels and molecular species. PLoS One 10:e0125192

    Article  PubMed  PubMed Central  Google Scholar 

  35. Elsaid KA, Machan JT, Waller K, Fleming BC, Jay GD (2009) The impact of anterior cruciate ligament injury on lubricin metabolism and the effect of inhibiting tumor necrosis factor alpha on chondroprotection in an animal model. Arthritis Rheum 60(10):2997–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teeple E, Elsaid KA, Fleming BC, Jay GD, Aslani K et al (2008) Coefficients of friction, lubricin, and cartilage damage in the anterior cruciate ligament-deficient guinea pig knee. J Orthop Res 26:231–237

    Article  PubMed  PubMed Central  Google Scholar 

  37. Young AA, McLennan S, Smith MM, Smith SM, Cake MA et al (2006) Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Res Ther 8:R41

    Article  PubMed  PubMed Central  Google Scholar 

  38. Elsaid KA, Fleming BC, Oksendahl HL, Machan JT, Fadale PD et al (2008) Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum 58:1707–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Musumeci G, Loreto C, Leonardi R, Castorina S, Giunta S et al (2013) The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Metab 31:274–284

    Article  CAS  Google Scholar 

  40. Mansfield JC, Winlove CP (2012) A multi-modal multiphoton investigation of microstructure in the deep zone and calcified cartilage. J Anat 220:405–416

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schultz M, Molligan J, Schon L, Zhang Z (2015) Pathology of the calcified zone of articular cartilage in post-traumatic osteoarthritis in rat knees. PLoS One 10:e0120949

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pan J, Zhou X, Li W, Novotny JE, Doty SB et al (2009) In situ measurement of transport between sub-chondral bone and articular cartilage. J Orthop Res 27:1347–1352

    Article  PubMed  PubMed Central  Google Scholar 

  43. Arkill KP, Winlove CP (2008) Solute transport in the deep and calcified zones of articular cartilage. Osteoarthritis Cartilage 16:708–771

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yoshiko Miyake for her invaluable secretarial assistance. DJ was a postdoctoral fellow supported by the Japanese Society for Promotion of Science (JSPS) when conducting the research described here. This study was supported by the Grant-in-aid for Scientific Research (B) [No.JP15H05014, No. JP 24390415] to MT and (C) [No. JP 15K11038] to EA and (C) [No.JP 25462886] to S.K. and Exploratory Research [No. JP 26670808] to MT from the Japan Society for the Promotion of Science (JSPS) and by the Grant in Aid attached to the JSPS Postdoctoral Fellowship for Overseas Researchers number 25/03412 to MT and DJ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satoshi Kubota or Masaharu Takigawa.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janune, D., Abd El Kader, T., Aoyama, E. et al. Novel role of CCN3 that maintains the differentiated phenotype of articular cartilage. J Bone Miner Metab 35, 582–597 (2017). https://doi.org/10.1007/s00774-016-0793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-016-0793-4

Keywords

Navigation