Skip to main content
Log in

Modified grey wolf optimizer-based support vector regression for ship maneuvering identification with full-scale trial

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

This study explores a nonparametric identification scheme for a ship maneuvering mathematical model. To overcome the difficulty in setting support vector regression (SVR) hyperparameters, a modified grey wolf optimizer algorithm is proposed. The algorithm introduces a nonlinear convergence factor and an adaptive position update strategy to enhance the search ability, which contributes toward identifying optimal hyperparameters. Using these optimal hyperparameters, SVR can predict the state variables pertaining to ship motion with high precision. The prediction of the motion state variables of the vessel YUKUN is considered as an illustrative example to verify the algorithm’s generalization ability and robustness. The prediction results indicate that, compared with the SVR based on the firefly algorithm and the particle swarm optimization, the proposed scheme offers the advantages of robustness, fewer iterations, and smaller prediction errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MGWO:

Modified grey wolf optimizer

SVR:

Support vector regression

FA:

Firefly algorithm

SI:

System identification

LS:

Least squares

RPE:

Recursive prediction error

EKF:

Extended Kalman filter

ML:

Maximum likelihood

NN:

Neural network

SVM:

Support vector machine

GA:

Genetic algorithm

RBF:

Radial basis function

RNN:

Recursive neural network

LWL:

Locally weighted learning

PSO:

Particle swarm optimization

ABC:

Artificial bee colony

DOF:

Degree of freedom

LWR:

Local weighted regression

\(u\) :

Surge velocity

\(v\) :

Sway velocity

\(r\) :

Yaw rate

\(\dot{u}\) :

Surge acceleration

\(\dot{v}\) :

Sway acceleration

\(\dot{r}\) :

Yaw acceleration

\(\delta\) :

Rudder angle

\(\psi\) :

Heading angle

\(\mathop{X}\limits^{\rightharpoonup}\) :

Position vector of grey wolf

\(\mathop{D}\limits^{\rightharpoonup}\) :

Distance vector of grey wolf

\(K\left({x}_{i},{x}_{j}\right)\) :

Kernel functions

MaxAE:

Maximum absolute error

MAE:

Mean absolute error

EV:

Error variance

MSE:

Mean square error

CC:

Correlation coefficient

OI:

Optimization iterations

References

  1. Zhu M, Hahn A, Wen Y, Bolles A (2017) Parameter identification of ship maneuvering models using recursive least square method based on support vector machines. TransNav Int J Mar Navig Saf Sea Transp 11(1):23–29

    Article  Google Scholar 

  2. Zhou WW, Blanke M (1986) Identification of a class of nonlinear state-space models using RPE techniques, 1986 25th IEEE Conference on Decision and Control, Athens, pp. 1637–1642

  3. Shi C, Zhao D, Peng J, Shen C (2009) Identification of ship maneuvering model using extended kalman filters. TransNav 3(1):105–110

    Google Scholar 

  4. Åström KJ, Källström CG (1976) Identification of ship steering dynamics[J]. Automatica 12(1):9–22

    Article  Google Scholar 

  5. Wang N, Er MJ, Han M (2015) Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks[J]. IEEE Trans Cybern 45(12):2732–2743

    Article  Google Scholar 

  6. Luo WL, Zou ZJ (2009) Parametric identification of ship maneuvering models by using support vector machines. J Ship Res 53(01):19–30

    Article  Google Scholar 

  7. Witkowska A, Śmierzchalski R (2008) Identifying ship parameters with the aid of genetic algorithm[J]. Prace Naukowe Politechniki Warszawskiej Elektronika 165:245–252

    Google Scholar 

  8. Zhang G, Zhang X, Pang H (2015) Multi-innovation auto-constructed least squares identification for 4 DOF ship manoeuvring modelling with full-scale trial data[J]. ISA Trans 58:186–195

    Article  Google Scholar 

  9. Xie S, Chu X, Liu C et al (2020) Parameter identification of ship motion model based on multi-innovation methods[J]. J Mar Sci Technol 25(1):162–184

    Article  Google Scholar 

  10. Yin J, Zou Z, Xu F (2013) On-line prediction of ship roll motion during maneuvering using sequential learning RBF neural networks [J]. Ocean Eng 61:139–147

    Article  Google Scholar 

  11. Chiu FC, Chang TL, Go J, et al (2004) A recursive neural networks model for ship maneuverability prediction[C] Oceans' 04 MTS/IEEE Techno-Ocean' 04 (IEEE Cat. No. 04CH37600). IEEE, 3: 1211–1218

  12. Bai W, Ren J, Li T (2019) Modified genetic optimization-based locally weighted learning identification modeling of ship maneuvering with full scale trial[J]. Futur Gener Comput Syst 93:1036–1045

    Article  Google Scholar 

  13. Bai W, Ren J, Li T et al (2019) Grid index subspace constructed locally weighted learning identification modeling for high dimensional ship maneuvering system[J]. ISA Trans 86:144–152

    Article  Google Scholar 

  14. Zhang X, Zou Z (2011) Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression[J]. J Hydrodyn 23(3):353–360

    Article  Google Scholar 

  15. Wang Z, Zou Z, Soares CG (2019) Identification of ship manoeuvring motion based on nu-support vector machine[J]. Ocean Eng 183:270–281

    Article  Google Scholar 

  16. Wang X, Zou Z, Yu L et al (2015) System identification modeling of ship manoeuvring motion in 4 degrees of freedom based on support vector machines[J]. China Ocean Eng 29(4):519–534

    Article  Google Scholar 

  17. Wang XG, Zou ZJ, Hou XR et al (2015) System identification modelling of ship manoeuvring motion based on -support vector regression[J]. J Hydrodyn Ser B 27(4):502–512

    Article  Google Scholar 

  18. Luo W, Soares CG, Zou Z (2016) Parameter identification of ship maneuvering model based on support vector machines and particle swarm optimization. J Offshore Mech Arctic Eng 138(3):031101

    Article  Google Scholar 

  19. Zhu M, Hahn A, Wen YQ et al (2017) Identification-based simplified model of large container ships using support vector machines and artificial bee colony algorithm[J]. Appl Ocean Res 68:249–261

    Article  Google Scholar 

  20. Hou XR, Zou ZJ (2015) SVR-based identification of nonlinear roll motion equation for FPSOs in regular waves[J]. Ocean Eng 109(15):531–538

    Article  Google Scholar 

  21. Hou X, Zou Z, Xu F (2016) SVR-based Parameter Identification of Coupled Heave-pitch Motion Equations in Regular Waves. The 26th International Ocean and Polar Engineering Conference, Rhodes, pp 580–585

  22. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  23. Tolouei K, Moosavi E (2020) Production scheduling problem and solver improvement via integration of the grey wolf optimizer into the augmented Lagrangian relaxation method. SN Appl Sci. https://doi.org/10.1007/s42452-020-03758-z

    Article  Google Scholar 

  24. Merikhi B, Mirjalili SM, Zoghi M et al (2019) Radiation pattern design of photonic crystal LED optimized by using multi-objective grey wolf optimizer[J]. Photon Netw Commun 38(1):167–176

    Article  Google Scholar 

  25. Ma X, Mei X, Wu W et al (2019) A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China[J]. Energy 178:487–507

    Article  Google Scholar 

  26. Dewangan RK, Shukla A, Godfrey WW (2019) Three dimensional path planning using Grey wolf optimizer for UAVs[J]. Appl Intell 49(6):2201–2217

    Article  Google Scholar 

  27. Panda M, Das B, Pati BB (2020) Global path planning for multiple AUVs using GWO[J]. Arch Control Sci 30(1):77–100

    MathSciNet  MATH  Google Scholar 

  28. Bai W, Ren J, Li T (2018) Multi-innovation gradient iterative locally weighted learning identification for a nonlinear ship maneuvering system[J]. China Ocean Eng 32(3):288–300

    Article  Google Scholar 

  29. Perera LP, Oliveira P, Soares CG (2016) System identification of vessel steering with unstructured uncertainties by persistent excitation maneuvers[J]. IEEE J Oceanic Eng 41(3):515–528

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51779029) and Fundamental Research Funds for the Central Universities (3132019306). The authors sincerely thank all the crew members who completed the full-scale sea trial test. The authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Meng, Y., Liu, Z. et al. Modified grey wolf optimizer-based support vector regression for ship maneuvering identification with full-scale trial. J Mar Sci Technol 27, 576–588 (2022). https://doi.org/10.1007/s00773-021-00858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-021-00858-2

Keywords

Navigation