Skip to main content
Log in

Finite-time robust H control for high-speed underwater vehicles subject to parametric uncertainties and disturbances

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Traditional underwater vehicles are limited in speed due to dramatic friction drag on the hull. Supercavitating vehicles exploit supercavitation as a means to reduce drag and increase their underwater speed. Compared with fully wetted vehicles, the nonlinearities in modeling of cavitator, fin, and in particular, nonlinear planing force make the control design of supercavitating vehicles more challenging. By combining cascaded design and backstepping approach, this paper reformulates the supercavitating vehicle model into a novel cascade model with two error tracking subsystems. Based on linear matrix inequalities (LMIs) and by introducing the sector conditions of the nonlinear characteristics of planing force, a new finite-time robust \(H_{\infty }\) control scheme is proposed for the error tracking subsystems which ensures that the closed-loop system is finite-time bounded and the effect of the disturbance input on the controlled output is reduced to a prescribed level. A sufficient condition is presented for the solvability of the design problem, which is further reduced to a feasibility problem of a set of LMIs. Simulations have been conducted for both initial and tracking responses to evaluate the performance and robustness of the proposed \(H_{\infty }\) controller for all admissible uncertainties and the disturbance inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\sigma\) :

Cavitation number

\(\rho\) :

Fluid density (kg/m3)

\(\rho_{\text{b}}\) :

The supercavitating vehicle density (kg/m3)

\(r_{\rho }\) :

Ratio of \(\rho_{\text{b}}\) to \(\rho\), dimensionless

\(m\) :

Mass of the supercavitating vehicle (kg)

\(I_{\text{yy}}\) :

Moment of inertia about the body-fixed reference frame (kg m2)

\(C_{x0}\) :

Cavitator drag coefficient at zero angle of attack

\(L\) :

The supercavitating vehicle length (m)

\(L_{\text{g}}\) :

Location of the center of gravity in the body-fixed reference frame (m)

\(V\) :

Forward velocity (m/s)

\(\theta\) :

Pitch angle (rad)

\(q\) :

Pitch rate (rad/s)

\(z\) :

Vertical position (m)

\(w\) :

Vertical velocity (m/s)

\(\delta_{\text{c}}\) :

Cavitator angle with respect to the \(x\)-axis (rad)

\(\delta_{\text{f}}\) :

Fin angle of attack in the body coordinates (rad)

\(\alpha_{\text{c}}\) :

Cavitator angle of attack (rad)

\(\alpha_{\text{f}}\) :

Fin angle of attack (rad)

\(\alpha_{\text{p}}\) :

Angle of attack at the planing location (rad)

\(F_{\text{cav}}\) :

Cavitator hydrodynamic force (N)

\(F_{\text{fin}}\) :

Fin hydrodynamic force (N)

\(F_{\text{g}}\) :

Gravity force (N)

\(F_{\text{p}}\) :

Planing force (N)

\(M_{\text{g}}\) :

Gravity moment with respect to the center of pressure of the cavitator (N m)

\(M_{\text{fin}}\) :

Fin moment with respect to the center of pressure of the cavitator (N m)

\(M_{\text{p}}\) :

Planing moment with respect to the center of pressure of the cavitator (N m)

\(n\) :

Effectiveness of fins relative to the cavitator, dimensionless

\(R\) :

Radius of cylindrical section (m)

\(R_{\text{n}}\) :

Radius of the cavitator (m)

\(R_{\text{c}}\) :

Cavity radius at planing location (m)

\(R^{\prime}\) :

Normalized difference between cavity and body diameter, dimensionless

\(h^{\prime}\) :

Normalized immersion, dimensionless

References

  1. Kirschner IN, Uhlman JS, Perkins JB (2006) Overview of high-speed supercavitating vehicle control. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, pp 1–17

  2. Fredette A, Henoch C, Castano J (2006) “Experimental studies in the control of cavitating bodies”, AIAA guidance, navigation, and control conference and exhibit. Keystone, Colorado, pp 1–17

    Google Scholar 

  3. Zou W, Yu KP, Arndt R, Zhang G, Li ZW (2013) On the shedding of the ventilated supercavity with velocity disturbance. Ocean Eng 57:223–229

    Article  Google Scholar 

  4. Sturgeon V (2001) Racing through water: supercavitation. Caltech Undergrad Res J 1(2):16–21

    Google Scholar 

  5. Serebryakov VV (2002) Supercavitation for high speed motion in water prediction and drag reduction problems. Am Soc Mech Eng (FED) 257:411–417

    Google Scholar 

  6. Wu X, Chahine GL (2007) Characterization of the content of the cavity behind a high-speed supercavitating body. ASME Trans J Fluids Eng 129(2):136–145

    Article  Google Scholar 

  7. Zhang XW, Wei YJ, Zhang JZ, Wang C, Yu KP (2007) Experimental research on the shape characters of natural and ventilated supercavitation. J Hydrodynam 19:564–571

    Article  Google Scholar 

  8. Kulkarni SS, Pratap R (2000) Studies on the dynamics of a supercavitating projectile. Appl Math Model 24(2):113–129

    Article  MATH  Google Scholar 

  9. Ruzzene M, Soranna F (2002) Impact dynamics of elastic supercavitating underwater vehicles. In: The 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pp 1–11

  10. Lin G, Balachandran B, Abed EH (2006) Bifurcation behavior of a supercavitating vehicle. In: Presented at the ASME IMECE, Chicago, IL, pp 1–8

  11. Lin G, Balachandran B, Abed EH (2007) Nonlinear dynamics and bifurcations of a supercavitating vehicle. IEEE J Oceanic Eng 32(4):753–761

    Article  Google Scholar 

  12. Mokhtarzadeh H, Balas G, Arndt R (2012) Effect of cavitator on supercavitating vehicle dynamics. IEEE J Oceanic Eng 37(2):156–165

    Article  Google Scholar 

  13. Sanabria DE, Balas G, Arndt R (2015) Modeling, control, and experimental validation of a high-speed supercavitating vehicle. IEEE J Oceanic Eng 40(2):362–373

    Article  Google Scholar 

  14. Kirschner IN, Kring DC, Stokes AW, Fine NE, Uhlman JS (2002) Control strategies for supercavitating vehicles. J Vib Control 8:219–242

    Article  MATH  Google Scholar 

  15. Shao Y, Mesbahi M, Balas G (2003) Planing, switching, and supercavitating flight control. In: Presented at the AIAA Guid., Nav., Control Conf. Exhibit, Austin, TX, pp. 1–8

  16. Vanek B, Bokor J, Balas G (2006) Theoretical aspects of high-speed supercavitation vehicle control. In: Proceedings of the American Control Conference, Minneapolis, MN, pp 5263–5268

  17. Vanek B, Bokor J, Balas G (2006) High-speed supercavitation vehicle control. In: AIAA Guidance, Navigation, and Control Conference, Keystone, CO, pp. 3165–3172

  18. Vanek B, Bokor J, Balas G, Arndt R (2007) Longitudinal motion control of a high-speed supercavitation vehicle. J Vib Control 13:159–184

    Article  MATH  Google Scholar 

  19. Lin G, Balachandran B, Abed EH (2006) Nonlinear dynamics and control of supercavitating bodies. In: AIAA Guidance, Navigation, and Control Conference, Keystone, CO, pp 1–14

  20. Dzielski J, Kurdila A (2003) A benchmark control problem for supercavitating vehicles and an initial investigation of solutions. J Vib Control 9:791–804

    Article  MATH  Google Scholar 

  21. Goel A (2002) Control strategies for supercavitating vehicles. M.S. thesis, MAE, Univ. Florida, Gainesville

  22. Vanek B (2008) Control methods for high-speed supercavitating vehicles. PhD thesis, University of Minnesota

  23. Vanek B, Balas G, Arndt R (2010) Linear, parameter-varying control of a supercavitating vehicle. Control Eng Pract 18(9):1003–1012

    Article  Google Scholar 

  24. Mao XF, Wang Q (2009) Nonlinear control design for a supercavitating vehicle. IEEE Trans Control Syst Technol 17(4):816–832

    Article  Google Scholar 

  25. Mao XF, Wang Q (2011) Delay-dependent control design for a time-delay supercavitating vehicle model. J Vib Control 17:431–448

    Article  MathSciNet  MATH  Google Scholar 

  26. Hassouneh MA, Nguyen V, Balachandran B, Abed EH (2013) Stability analysis and control of supercavitating vehicles with advection delay. J Comput Nonlinear Dyn 8:1–10

    Google Scholar 

  27. Kim Seonhong, Kim Nakwan (2015) Neural network-based adaptive control for a supercavitating vehicle in transition phase. J Mar Sci Technol 20:454–466

    Article  Google Scholar 

  28. Amato F, Ariola M, Dorato P (2001) Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37:1459–1463

    Article  MATH  Google Scholar 

  29. Amato F, Ariola M, Cosentino C (2006) Finite-time stabilization via dynamic output feedback. Automatica 42:337–342

    Article  MathSciNet  MATH  Google Scholar 

  30. Amato F, Ambrosino R, Cosentino C, Tommasi G (2010) De, “Input-output finite time stabilization of linear systems”. Automatica 46:1558–1562

    Article  MathSciNet  MATH  Google Scholar 

  31. Meng QY, Shen YJ (2009) Finite-time H control for linear continuous system with norm-bounded disturbance. Commun Nonlinear Sci Numer Simulat 14:1043–1049

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo Y, Yao Y, Wang SC, Ma KM, Liu K, Guo J (2014) Input-output finite-time stabilization of linear systems with finite-time boundedness. ISA Trans 53:977–982

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (No. 61174001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Zhang or Kemao Ma.

Appendices

Appendix A

Consider the following time-invariant linear systems:

$${\dot{\mathbf{x}}}_{{\mathbf{1}}} (t) = {\mathbf{A}}_{{{\mathbf{11}}}} {\mathbf{x}}_{{\mathbf{1}}} (t) + {\mathbf{A}}_{{{\mathbf{12}}}} {\mathbf{x}}_{{\mathbf{2}}} (t)$$
(83)
$${\dot{\mathbf{x}}}_{{\mathbf{2}}} (t) = {\mathbf{A}}_{{{\mathbf{21}}}} {\mathbf{x}}_{{\mathbf{1}}} (t) + {\mathbf{A}}_{{{\mathbf{22}}}} {\mathbf{x}}_{{\mathbf{2}}} (t) + {\mathbf{Gw}}(t)$$
(84)

where \({\mathbf{x}}_{{\mathbf{1}}} (t) \in {\mathbb{R}}^{{n_{1} }}\) and \({\mathbf{x}}_{{\mathbf{2}}} (t) \in {\mathbb{R}}^{{n_{2} }}\) constitute the state variables, \({\mathbf{w}}(t) \in {\mathbb{R}}^{l}\) is the exogenous disturbance, and \({\mathbf{A}}_{{{\mathbf{11}}}} \in {\mathbb{R}}^{{n_{1} \times n_{1} }}\), \({\mathbf{A}}_{{{\mathbf{12}}}} \in {\mathbb{R}}^{{n_{1} \times n_{2} }}\), \({\mathbf{A}}_{{{\mathbf{21}}}} \in {\mathbb{R}}^{{n_{2} \times n_{1} }}\), \({\mathbf{A}}_{{{\mathbf{22}}}} \in {\mathbb{R}}^{{n_{2} \times n_{2} }}\), \({\mathbf{G}} \in {\mathbb{R}}^{{n_{2} \times l}}\).

Definition 1

(finite-time stability): The linear system

$${\dot{\mathbf{x}}}(t) = {\mathbf{Ax}}(t),\,{\mathbf{x}}(0) = {\mathbf{x}}_{{\mathbf{0}}}$$
(85)

is said to be finite-time stable with respect to \((c_{1} ,c_{2} ,T,R,d)\) with \(c_{2} > c_{1} > 0\), \(R > 0\), if \({\mathbf{x}}_{{\mathbf{0}}}^{{\mathbf{T}}} {\mathbf{Rx}}_{{\mathbf{0}}} \le c_{1}^{2}\) implies

$${\mathbf{x}}^{T} (t){\mathbf{Rx}}(t) < c_{2}^{2} ,\quad\forall t \in [0,T]$$
(86)

Definition 2

[finite-time boundedness (FTB)]: The linear systems (1) and (2) subject to an exogenous disturbance, \(w(t)\), are said to be FTB with respect to \((c_{1} ,c_{2} ,T,{\mathbf{R}}_{{\mathbf{1}}} ,{\mathbf{R}}_{{\mathbf{2}}} ,d)\) with \(c_{2} > c_{1} > 0\), \(R_{1} > 0\), \(R_{2} > 0\), if \(\forall t \in [0,T]\),

$${\mathbf{x}}_{{\mathbf{1}}}^{{\mathbf{T}}} (0){\mathbf{R}}_{{\mathbf{1}}} {\mathbf{x}}_{{\mathbf{1}}} (0) + {\mathbf{x}}_{{\mathbf{2}}}^{{\mathbf{T}}} (0){\mathbf{R}}_{{\mathbf{2}}} {\mathbf{x}}_{{\mathbf{2}}} (0) < c_{1}^{2} \Rightarrow {\mathbf{x}}_{{\mathbf{1}}}^{{\mathbf{T}}} {\mathbf{R}}_{{\mathbf{1}}} {\mathbf{x}}_{1} + {\mathbf{x}}_{{\mathbf{2}}}^{{\mathbf{T}}} {\mathbf{R}}_{{\mathbf{2}}} {\mathbf{x}}_{{\mathbf{2}}} < c_{2}^{2}$$
(87)

Appendix B

Our approach relies on the assumption that the delay in the equations of motion can be eliminated by applying a suitable feedback. Then, the controllability analysis and the controller design can be performed for linear time invariant (LTI) systems. In addition, it is assumed that all states can be measured.

The SV equations can be written in compact form as:

$${\dot{\mathbf{x}}} = {\mathbf{f}}({\mathbf{x}}) + {\mathbf{g}}({\mathbf{x}}){\mathbf{u}}$$
(88)
$${\mathbf{y}} = {\mathbf{h}}({\mathbf{x}})$$
(89)

where \({\mathbf{x}} = [x_{1} \;\;x_{2} \;\;x_{3} \;\;x_{ 4} ]^{\rm T} = [z\;\;w\;\;\theta \;\;q]^{\rm T} \in {\mathbb{R}}^{4}\) is the state variable, \({\mathbf{u}} = [\delta_{\text{c}} \;\;\delta_{\text{f}} ]^{\rm T} \in {\mathbb{R}}^{2}\) is the control input, and \({\mathbf{y}} = [x_{1} \;\;x_{3} ]^{\rm T}\) is the output to be controlled by the control input \({\mathbf{u}}\).

From (18) and (19) in previous section, considering the nonlinear planing force, we have:

$${\mathbf{f}}({\mathbf{x}}) = \left[ {\begin{array}{*{20}c} {f_{1} } \\ {f_{2} } \\ {f_{3} } \\ {f_{4} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {x_{2} - Vx_{3} } \\ {\frac{{C_{\text{cav}} - nC_{\text{cav}} }}{mV}x_{2} + \frac{{C_{\text{cav}} - nC_{\text{cav}} }}{m}x_{ 3} + \frac{{ - C_{\text{cav}} L_{\text{c}} + nC_{\text{cav}} L_{\text{f}} }}{mV}x_{4} + g + \frac{{F_{\text{p}} }}{m}} \\ {x_{ 4} } \\ {\frac{{ - C_{\text{cav}} L_{\text{c}} + nC_{\text{cav}} L_{\text{f}} }}{{I_{\text{yy}} V}}x_{2} + \frac{{ - C_{\text{cav}} L_{\text{c}} + nC_{\text{cav}} L_{\text{f}} }}{{I_{\text{yy}} }}x_{ 3} + \frac{{C_{\text{cav}} L_{\text{c}}^{2} - nC_{\text{cav}} L_{\text{f}}^{2} }}{{I_{\text{yy}} V}}x_{4} - \frac{{F_{\text{p}} L_{\text{f}} }}{{I_{\text{yy}} }}} \\ \end{array} } \right]$$
(90)
$${\mathbf{g}}({\mathbf{x}}) = \left[ {\begin{array}{*{20}c} 0 & 0 \\ {\frac{{C_{\text{cav}} }}{m}} & { - \;\frac{{nC_{\text{cav}} }}{m}} \\ 0 & 0 \\ { - \frac{{C_{\text{cav}} L_{\text{c}} }}{{I_{\text{yy}} }}} & {\frac{{nC_{\text{cav}} L_{\text{f}} }}{{I_{\text{yy}} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{g}}_{1} } & {{\mathbf{g}}_{2} } \\ \end{array} } \right].$$
(91)

By choosing \({\mathbf{y}} = [x_{1} \;\;x_{3} ]^{\rm T}\), the Lie derivative of \(h_{i}\) with respect to \({\mathbf{g}}_{i}\) is given by:

$$L_{{{\mathbf{g}}_{i} }} h_{i} ({\mathbf{x}}) = 0,\,i = 1,2$$
(92)

Using \(L_{{\mathbf{f}}} h_{1} ({\mathbf{x}}) = x_{2} - Vx_{3}\) and \(L_{\text{f}} h_{2} ({\mathbf{x}}) = x_{4}\), we obtain:

$$\begin{aligned} L_{{{\text{g}}_{1} }} L_{\text{f}} h_{1} ({\mathbf{x}}) &= C_{\text{cav}} /m \ne 0 \hfill \\ L_{{{\text{g}}_{ 1} }} L_{\text{f}} h_{2} ({\mathbf{x}}) &= - C_{\text{cav}} L_{\text{c}} /I_{\text{yy}} \ne 0 \hfill \\ L_{{{\text{g}}_{ 2} }} L_{\text{f}} h_{1} ({\mathbf{x}}) &= - nC_{\text{cav}} /m \ne 0 \hfill \\ L_{{{\text{g}}_{2} }} L_{\text{f}} h_{2} ({\mathbf{x}}) &= nC_{\text{cav}} L_{\text{f}} /I_{\text{yy}} \ne 0. \hfill \\ \end{aligned}$$
(93)

Obviously, systems (88) and (89) have a relative degree \(\rho = 2\). Then, we should find the choosed nonlinear mapping whose Jacobian matrix \({\mathbf{E}}(x)\) is locally nonsingular.

Hence

$$rank\left( {{\mathbf{E}}({\mathbf{x}})} \right) = rank\left( {\left[ {\begin{array}{*{20}c} {L_{{{\mathbf{g}}_{1} }} L_{{\mathbf{f}}} h_{1} ({\mathbf{x}})} & {L_{{{\mathbf{g}}_{2} }} L_{{\mathbf{f}}} h_{1} ({\mathbf{x}})} \\ {L_{{{\mathbf{g}}_{1} }} L_{{\mathbf{f}}} h_{2} ({\mathbf{x}})} & {L_{{{\mathbf{g}}_{2} }} L_{{\mathbf{f}}} h_{2} ({\mathbf{x}})} \\ \end{array} } \right]} \right) = 2$$
(94)

New state variables for Eq. 88 are selected for analysis and control design:

$$z_{1} = h_{1} ({\mathbf{x}}) = x_{1}$$
(95)
$$z_{2} = L_{\text{f}} h_{1} ({\mathbf{x}}) = x_{2} - Vx_{3}$$
(96)
$$z_{3} = h_{2} ({\mathbf{x}}) = x_{3}$$
(97)
$$z_{4} = L_{\text{f}} h_{2} ({\mathbf{x}}) = x_{ 4}$$
(98)

Differentiating Eqs. 96 and 98 with respect to time along Eqs. 88 and 89 gives:

$$L_{\text{f}}^{2} h_{1} ({\mathbf{x}}) = f_{2} - Vf_{3} ,\,L_{\text{f}}^{2} h_{2} ({\mathbf{x}}) = f_{4} .$$
(99)

The foregoing equation shows clearly that the system is input–output linearizable, since the state feedback control

$${\mathbf{u}} = \left[ {\begin{array}{*{20}c} {u_{1} } \\ {u_{2} } \\ \end{array} } \right] = - {\mathbf{E}}^{ - 1} ({\mathbf{x}})\left[ {\begin{array}{*{20}c} {L_{\text{f}}^{2} h_{1} ({\mathbf{x}})} \\ {L_{\text{f}}^{2} h_{2} ({\mathbf{x}})} \\ \end{array} } \right] + {\mathbf{E}}^{ - 1} ({\mathbf{x}}){\mathbf{v}}$$
(100)

reduces the input–output map to

$$\varvec {\ddot{\textit{y}}} = \left[ \begin{aligned} {\ddot{\textit{z}}}_{1} \hfill \\ {\ddot{\textit{z}}}_{3} \hfill \\ \end{aligned} \right] = \left[ {\begin{array}{*{20}c} {L_{\text{f}}^{2} h_{1} ({\mathbf{x}})} \\ {L_{\text{f}}^{2} h_{2} ({\mathbf{x}})} \\ \end{array} } \right] + {\mathbf{Eu}} = {\mathbf{v}}$$
(101)

where \({\mathbf{v}} = \left[ {v_{1} \;\;v_{2} } \right]^{\rm T}\) is a fictitious input vector.

Based on the linear model of the SV, define commands of \(z\) and \(\theta\) as \(z_{\text{d}}\) and \(\theta_{\text{d}}\), respectively, the command tracking errors can be expressed as follows:

$$e_{\text{z}} = z - z_{\text{d}} ,\quad {\mkern 1mu} e_{\theta } = \theta - \theta_{\text{d}}$$
(102)

Considering the derivative of command tracking errors, then rewrite the errors into a vector form:

$${\mathbf{X}} = [e_{\text{z}} {\mkern 1mu} {\mkern 1mu} \dot{e}_{\text{z}} ]^{T} ,{\mkern 1mu} {\mathbf{Y}} = [e_{\theta } {\mkern 1mu} {\mkern 1mu} \dot{e}_{\theta } ]^{T}$$
(103)

The error equations of the SV can be written as:

$$\dot{\mathbf{{X}}} = {\mathbf{A}}_{{\mathbf{1}}} {\mathbf{X}} + {\mathbf{B}}_{{\mathbf{1}}} w_{1}$$
(104)
$$\dot{\mathbf{{Y}}} = {\mathbf{A}}_{{\mathbf{2}}} {\mathbf{Y}} + {\mathbf{B}}_{{\mathbf{2}}} w_{2}$$
(105)

where

\({\mathbf{A}}_{{\mathbf{1}}} = {\mathbf{A}}_{{\mathbf{2}}} = \left[ {\begin{array}{*{20}c} 0 & 1 \\ 0 & 0 \\ \end{array} } \right]\), \({\mathbf{B}}_{{\mathbf{1}}} = {\mathbf{B}}_{{\mathbf{2}}} = \left[ \begin{aligned} 0 \hfill \\ 1 \hfill \\ \end{aligned} \right]\), \(w_{1} = {\ddot{\textit{z}}} - {\ddot{\textit{z}}}_{\text{d}}\), and \(w_{2} = \ddot{\theta } - \ddot{\theta }_{\text{d}}\).

As the feedback linearized system is completely controllable, it is apt to use the linear quadratic regulator technique to design a state feedback controller. The LQR solution formulae use solutions of two algebraic Riccati equations (AREs):

$${\mathbf{A}}_{{\mathbf{1}}}^{{\mathbf{T}}} {\mathbf{P}}_{{\mathbf{1}}} + {\mathbf{P}}_{{\mathbf{1}}} {\mathbf{A}}_{{\mathbf{1}}} - {\mathbf{P}}_{{\mathbf{1}}} {\mathbf{B}}_{{\mathbf{1}}} {\mathbf{R}}_{{\mathbf{1}}}^{{ - {\mathbf{1}}}} {\mathbf{B}}_{{\mathbf{1}}}^{{\mathbf{T}}} {\mathbf{P}}_{{\mathbf{1}}} + {\mathbf{Q}}_{{\mathbf{1}}} = 0$$
(106)
$${\mathbf{A}}_{{\mathbf{2}}}^{{\mathbf{T}}} {\mathbf{P}}_{{\mathbf{2}}} {\mathbf{ + P}}_{{\mathbf{2}}} {\mathbf{A}}_{{\mathbf{2}}} - {\mathbf{P}}_{{\mathbf{2}}} {\mathbf{B}}_{{\mathbf{2}}} {\mathbf{R}}_{{\mathbf{2}}}^{{ - {\mathbf{1}}}} {\mathbf{B}}_{{\mathbf{2}}}^{{\mathbf{T}}} {\mathbf{P}}_{{\mathbf{2}}} {\mathbf{ + Q}}_{{\mathbf{2}}} = 0$$
(107)

where the weighting functions \({\mathbf{Q}}_{{\mathbf{1}}} {\mathbf{ = Q}}_{{\mathbf{1}}}^{{\mathbf{T}}}\), \({\mathbf{Q}}_{{\mathbf{2}}} {\mathbf{ = Q}}_{{\mathbf{2}}}^{{\mathbf{T}}}\), \({\mathbf{R}}_{{\mathbf{1}}} {\mathbf{ = R}}_{{\mathbf{1}}}^{{\mathbf{T}}}\), and \({\mathbf{R}}_{{\mathbf{2}}} {\mathbf{ = R}}_{{\mathbf{2}}}^{{\mathbf{T}}}\) are positive matrix.

Then, two optimal state regulators are:

$$w_{1} = - {\mathbf{R}}_{{\mathbf{1}}}^{{ - {\mathbf{1}}}} {\mathbf{B}}_{{\mathbf{1}}}^{{\mathbf{T}}} {\mathbf{P}}_{{\mathbf{1}}} {\mathbf{X}}$$
(108)
$$w_{2} = - {\mathbf{R}}_{{\mathbf{2}}}^{{ - {\mathbf{1}}}} {\mathbf{B}}_{{\mathbf{2}}}^{{\mathbf{T}}} {\mathbf{P}}_{{\mathbf{2}}} {\mathbf{Y}}$$
(109)

The fictitious input vector is denoted as:

$${\mathbf{v}} = \left[ {\begin{array}{*{20}l} {\nu_{1} } \hfill \\ {\nu_{2} } \hfill \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} {\ddot{{z}}_{\text{d}} } \hfill \\ {\ddot{\theta }_{\text{d}} } \hfill \\ \end{array} } \right] + \left[ {\begin{array}{*{20}l} { - {\mathbf{R}}_{{\mathbf{1}}}^{{ - {\mathbf{1}}}} {\mathbf{B}}_{{\mathbf{1}}}^{\text{T}} {\mathbf{P}}_{{\mathbf{1}}} {\mathbf{X}}} \hfill \\ { - {\mathbf{R}}_{{\mathbf{2}}}^{{ - {\mathbf{1}}}} {\mathbf{B}}_{{\mathbf{2}}}^{\text{T}} {\mathbf{P}}_{{\mathbf{2}}} {\mathbf{Y}}} \hfill \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} {\ddot{\it z}} \hfill \\ {\ddot{\theta }} \hfill \\ \end{array} } \right].$$
(110)

The LQR optimal controller of the supercavitating vehicle is given by:

$$\left[ \begin{aligned} \delta_{\text{c}} \hfill \\ \delta_{\text{f}} \hfill \\ \end{aligned} \right] = - {\mathbf{E}}^{ - 1} ({\mathbf{x}})\left[ {\begin{array}{*{20}c} {L_{\text{f}}^{2} h_{1} ({\mathbf{x}})} \\ {L_{\text{f}}^{2} h_{2} ({\mathbf{x}})} \\ \end{array} } \right] + {\mathbf{E}}^{ - 1} ({\mathbf{x}})\left( {\left[ \begin{aligned} - {\mathbf{R}}_{{\mathbf{1}}}^{{ - {\mathbf{1}}}} {\mathbf{B}}_{{\mathbf{1}}}^{{\mathbf{T}}} {\mathbf{P}}_{{\mathbf{1}}} {\mathbf{X}} \hfill \\ - {\mathbf{R}}_{{\mathbf{2}}}^{{ - {\mathbf{1}}}} {\mathbf{B}}_{{\mathbf{2}}}^{{\mathbf{T}}} {\mathbf{P}}_{{\mathbf{2}}} {\mathbf{Y}} \hfill \\ \end{aligned} \right] + \left[ \begin{aligned} {\ddot{\it z}}_{\text{d}} \hfill \\ \ddot{\theta }_{\text{d}} \hfill \\ \end{aligned} \right]} \right).$$
(111)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ma, K., Wei, Y. et al. Finite-time robust H control for high-speed underwater vehicles subject to parametric uncertainties and disturbances. J Mar Sci Technol 22, 201–218 (2017). https://doi.org/10.1007/s00773-016-0404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-016-0404-z

Keywords

Navigation