Skip to main content
Log in

The effect of liquid viscosity on sloshing characteristics

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

A series of sloshing model tests for various viscous liquids were carried out and the effects of liquid viscosity on sloshing are investigated quantitatively in this paper. The experimental results show that the liquid viscosity has an important effect on sloshing pressure, which is the mean value of those peak pressures from several consecutive periods. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and the dissipation effect is more remarkable, especially when liquid viscosity becomes higher. As a result of viscous damping effect, the rising time of impact pressure is longer in higher viscosity liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim MH, Lee SM, Lee JM, Noh BJ, Kim WS (2010) Fatigue strength assessment of MARK-III type LNG cargo containment system. Ocean Eng 37(14–15):1243–1252

    Article  Google Scholar 

  2. Shi GJ, Wang DY (2012) Residual ultimate strength of open box girders with cracked damage. Ocean Eng 43:90–101

    Article  Google Scholar 

  3. Shi GJ, Wang DY (2012) Residual ultimate strength of cracked box girders under torsional loading. Ocean Eng 43:102–112

    Article  Google Scholar 

  4. Ibrahim RA (2005) Liquid sloshing dynamics: theory and applications. Cambridge University Press, Cambridge, pp 296–307

    Book  Google Scholar 

  5. Damatty AAE, Sweedan AMI (2006) Equivalent mechanical analog for dynamic analysis of pure conical tanks. Thin-Walled Struct 44(4):429–440

    Article  Google Scholar 

  6. Livaoglu R (2008) Investigation of seismic behavior of fluid-rectangular tank-soil/foundation systems in frequency domain. Soil Dyn Earthq Eng 28(2):132–146

    Article  Google Scholar 

  7. Curadelli O (2013) Equivalent linear stochastic seismic analysis of cylindrical base-isolated liquid storage tanks. J Constr Steel Res 83:166–176

    Article  Google Scholar 

  8. Faltinsen OM, Timokha AN (2002) Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. J Fluid Mech 470:319–357

    Article  MATH  MathSciNet  Google Scholar 

  9. Faltinsen OM, Rognebakke OF, Timokha AN (2003) Resonant three-dimensional nonlinear sloshing in a square-base basin. J Fluid Mech 487:1–42

    Article  MATH  MathSciNet  Google Scholar 

  10. Faltinsen OM, Rognebakke OF, Timokha AN (2005) Resonant three-dimensional nonlinear sloshing in a square base basin. Part 2. Effect of higher modes. J Fluid Mech 523:199–218

    Article  MATH  MathSciNet  Google Scholar 

  11. Faltinsen OM, Rognebakke OF, Timokha AN (2005) Classification of simulation and validation of three-dimensional nonlinear sloshing in a square-base tank with finite depth. J Fluids Struct 20(1):81–103

    Article  Google Scholar 

  12. Thiagarajan KP, Rakshit D, Repalle N (2011) The air–water sloshing problem: fundamental analysis and parametric studies on excitation and fill levels. Ocean Eng 38(2–3):498–508

    Article  Google Scholar 

  13. Akyildız H, Ünal NE (2006) Sloshing in a three-dimensional rectangular tank: numerical simulation and experimental validation. Ocean Eng 33(16):2135–2149

    Article  Google Scholar 

  14. Lee DH, Kim MH, Kwon SH, Kim JW, Lee YB (2007) A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Eng 34(1):3–9

    Article  Google Scholar 

  15. Löhner R, Yang C, Oñate E (2006) On the simulation of flows with violent free surface motion. Comput Methods Appl Mech Eng 195(41–43):5597–5620

    Article  MATH  Google Scholar 

  16. Liu DM, Lin PZ (2008) A numerical study of three-dimensional liquid sloshing in tanks. J Comput Phys 227(8):3921–3939

    Article  MATH  Google Scholar 

  17. Lee CJK, Noguchi H, Koshizuka S (2007) Fluid-shell structure interaction analysis by coupled particle and finite element method. Comput Struct 85(11–14):688–697

    Article  Google Scholar 

  18. Marsh A, Prakash M, Semercigil E, Turan OF (2011) A study of sloshing absorber geometry for structural control with SPH. J Fluids Struct 27(8):1165–1181

    Article  Google Scholar 

  19. Pan XJ, Zhang HX, Sun XY (2012) Numerical simulation of sloshing with large deforming free surface by MPS-LES method. China Ocean Eng 26(4):653–668

    Article  Google Scholar 

  20. Zhang AM, Cao XY, Ming FR, Zhang ZF (2013) Investigation on a damaged ship model sinking into water based on three dimensional SPH method. Appl Ocean Res 42:24–31

    Article  Google Scholar 

  21. Chen Z, Zong Z, Li HT, Li J (2013) An investigation into the pressure on solid walls in 2D sloshing using SPH method. Ocean Eng 59:129–141

    Article  MATH  Google Scholar 

  22. Guilcher PM, Couty N, Brosset L, Touzé DL (2013) Simulations of breaking wave impacts on a rigid wall at two different scales with a two phase fluid compressible SPH model. Int J Offshore Polar Eng. 23(4):241–253

    Google Scholar 

  23. Kim Y, Kim SY, Ahn Y, Kim KH, Jeon SE, Suh YS, Park JJ, Hwangbo SM (2013) Model-scale sloshing tests for an anti-sloshing floating blanket system. Int J Offshore Polar Eng 23(4):254–262

    Google Scholar 

  24. Kim SY, Kim KH, Kim YH (2012) Comparative study on model-scale sloshing tests. J Mar Sci Technol 17(1):47–58

    Article  Google Scholar 

  25. He H, Kuo JF, Rinehart AJ, Yung TW (2009) Influence of raised invar edges on sloshing impact pressures. Int J Offshore Polar Eng. 19(4):280–285

    Google Scholar 

  26. Rognebakke OF, Faltinsen OM (2003) Coupling of sloshing and ship motions. J Ship Res 47(3):208–221

    Google Scholar 

  27. Celebi MS, Akyildiz H (2002) Nonlinear modeling of liquid sloshing in a moving rectangular tank. Ocean Eng 29(12):1527–1553

    Article  Google Scholar 

  28. Frandsen JB (2004) Sloshing motions in excited tanks. J Comput Phys 196(1):53–87

    Article  MATH  Google Scholar 

  29. Akyildiz H, Ünal E (2005) Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing. Ocean Eng 32(11–12):1503–1516

    Article  Google Scholar 

  30. Lee SJ, Kim MH, Lee DH, Kim JW, Kim YH (2007) The effects of LNG-tank sloshing on the global motions of LNG carriers. Ocean Eng 34(1):10–20

    Article  Google Scholar 

  31. Akyildiz H (2012) A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank. J Sound Vib 331(1):41–52

    Article  MathSciNet  Google Scholar 

  32. Peregrine DH (2003) Water-wave impact on walls. Annu Rev Fluid Mech 35:23–43

    Article  MathSciNet  Google Scholar 

  33. Wu C-H, Faltinsen OM, Chen B-F (2013) Analysis on shift nature modes of liquid sloshing in a 3D tank subjected to oblique horizontal ground motions with damping devices. Adv Mech Eng 2013:1–24

    Google Scholar 

  34. Hilgenfeldt S, Brenner MP, Grossmann S, Lohse D (1998) Analysis of Rayleigh–Plesset dynamics for sonoluminescing bubbles. J Fluids Struct 365:171–204

    MATH  Google Scholar 

Download references

Acknowledgments

The work presented in this paper has been carried out under the co-support provided by the Ministry of Education and Ministry of Finance of China (Grant No. 201335), and by NSFC (51239007). The authors would like to acknowledge the co-support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yu Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, CF., Wang, DY., Cai, ZH. et al. The effect of liquid viscosity on sloshing characteristics. J Mar Sci Technol 20, 765–775 (2015). https://doi.org/10.1007/s00773-015-0329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-015-0329-y

Keywords

Navigation