Skip to main content
Log in

Comparative numerical analysis of the flow pattern and performance of a foil in flapping and undulating oscillations

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Nature presents a variety of propulsion, maneuvering, and stabilization mechanisms which can be inspired to design and construction of manmade vehicles and the devices involved in them, such as stabilizers or control surfaces. This study aims to elucidate and compare the propulsive vortical signature and performance of a foil in two important natural mechanisms: flapping and undulation. Navier–Stokes equations are solved in an ALE framework domain containing a 2D NACA 0012 foil moving with prescribed kinematics. All simulations are carried out using a pressure-based finite volume method solver. The results of time-averaged inline force versus Strouhal number (St) show that in a given Reynolds number (Re), the flapping oscillations begin to produce thrust at a smaller St, and with a greater slope than undulatory oscillations. However, consumed power of the flapping foil versus St varies with considerably higher values and greater slope than undulating foil. In addition, efficiency graphs show similar ascending–descending behaviors versus St, with greater “peak propulsive efficiency” for the undulating foil. Furthermore, one of the most important differences between the vortical structures of flapping and undulatory oscillations is the distinguishable appearance of leading edge vortices in the wake of the flapping foil without observable ones in the wake of undulating foil. Finally, the formation and dissipation patterns of distinct vortices in the wakes of both oscillating foils vary with St.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Tangorra JL, Esposito CJ, Lauder GV (2009) Biorobotic fins for investigations of fish locomotion. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, IEEE, pp 2120–2125

  2. Tangorra JL, et al (2006) A biorobotic pectoral fin for autonomous undersea vehicles. In: Conference proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2006. 1: pp 2726–2729

  3. Kato N (1998) Locomotion by mechanical pectoral fins. J Mar Sci Technol 3(3):113–121

    Article  Google Scholar 

  4. Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202(23):3439–3448

    Google Scholar 

  5. Ho S et al (2003) Unsteady aerodynamics and flow control for flapping wing flyers. Prog Aerosp Sci 39(8):635–681

    Article  Google Scholar 

  6. Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and micro air vehicles. Prog Aerosp Sci 35(5):455–505

    Article  Google Scholar 

  7. Sun B, Zhu D, Ding F, Yang SX (2013) A novel tracking control approach for unmanned underwater vehicles based on bio-inspired neurodynamics. J Mar Sci Technol 18(1):63–74

    Article  Google Scholar 

  8. Lau TC, Kelso RM, Hassan ER (2004) Flow visualisation of a pitching and heaving hydrofoil. In: Behnia M, Lin W, McBain GD (eds) Proceedings of the Fifteenth Australasian Fluid Mechanics Conference, University of Sydney

  9. Lin C-F, Tseng C-Y (2006) Development of a cost effective mini autonomous underwater vehicle. J Mar Sci Technol 14(2):119–126

    Google Scholar 

  10. Yuh J, Marani G, Blidberg DR (2011) Applications of marine robotic vehicles. Intell Serv Robot 4(4):221–231

    Article  Google Scholar 

  11. Amiralaei M (2012) Computational fluid dynamic simulation of airfoils in unsteady low Reynolds number flows

  12. Okong’o N, Knight DD (1998) Implicit unstructured Navier-Stokes simulation of leading edge separation over a pitching airfoil. Applied Numer Math 27(3):269–308

    Article  MATH  MathSciNet  Google Scholar 

  13. Triantafyllou MS, Triantafyllou GS, Gopalkrishnan R (1991) Wake mechanics for thrust generation in oscillating foils. Phys Fluids A 3(12):2835–2837

    Article  Google Scholar 

  14. Young J, Lai JCS (2004) Oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA J 42(10):2042–2052

    Article  Google Scholar 

  15. Lighthill J (1975) Mathematica Biofluiddynamics. Society for Industrial & Applied Mathematics, US

    Book  Google Scholar 

  16. Wu T, Brokaw C, Brennen C (1975) Swimming and flying in nature, vols. 1 and 2. Plenum Press, New York

  17. Rayner J (1979) A vortex theory of animal flight Part 1 The vortex wake of a hovering animal. J Fluid Mech 91(part 4):697–730

  18. Freymuth P (1988) Propulsive vortical signature of plunging and pitching airfoils. AIAA J 26(7):881–883

    Article  Google Scholar 

  19. Freymuth P (1990) Thrust generation by an airfoil in hover modes. Exp Fluids 9(1–2):17–24

    Article  Google Scholar 

  20. Oshima Y, Nastume A (1981) Flow field around an oscillating airfoil. In: International Symposium on Flow Visualization, Bochum, West Germany

  21. Koochesfahani MM (1989) Vortical patterns in the wake of an oscillating airfoil. AIAA J 27(9):1200–1205

    Article  Google Scholar 

  22. Anderson JM (1996) Vorticity control for efficient propulsion. DTIC Document

  23. Wang ZJ, Birch JM, Dickinson MH (2004) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J Exp Biol 207(3):449–460

    Article  Google Scholar 

  24. Singh B, Chopra I (2008) Insect-based hover-capable flapping wings for micro air vehicles: experiments and analysis. AIAA J 46(9):2115–2135

    Article  Google Scholar 

  25. Nagai H et al (2009) Experimental and numerical study of forward flight aerodynamics of insect flapping wing. AIAA J 47(3):730–742

    Article  Google Scholar 

  26. Kaya M, Tuncer IH (2007) Nonsinusoidal path optimization of a flapping airfoil. AIAA J 45(8):2075–2082

    Article  Google Scholar 

  27. Sun M, Tang J (2002) Lift and power requirements of hovering flight in Drosophila virilis. J Exp Biol 205(16):2413–2427

    Google Scholar 

  28. Young J, Lai JS, Germain C (2008) Simulation and parameter variation of flapping-wing motion based on dragonfly hovering. AIAA J 46(4):918–924

    Article  Google Scholar 

  29. Dong H et al (2005) Wake structure and performance of finite aspect-ratio flapping foils. AIAA Paper 81:2005

    Google Scholar 

  30. Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205(10):1507–1518

    Google Scholar 

  31. Flammang BE et al (2011) Volumetric imaging of fish locomotion. Biol Lett 7(5):695–698

    Article  Google Scholar 

  32. Shadwick RE, Lauder GV (2006) Fish biomechanics. Fish physiology series. Academic Press, Amsterdam, Boston, pp xiii, 542

  33. Lauder GV, Tytell ED (2005) Hydrodynamics of Undulatory Propulsion. 425–468

  34. Tytell ED, Lauder GV (2004) The hydrodynamics of eel swimming: I. Wake structure. J Exp Biol 207(11):1825–1841

    Article  Google Scholar 

  35. Drucker EG, Lauder GV (2002) Experimental hydrodynamics of fish locomotion: Functional insights from wake visualization. Integr Comp Biol 42(2):243–257

    Article  Google Scholar 

  36. Borazjani I (2008) Numerical simulations of fluid-structure interaction problems in biological flows. ProQuest

  37. Carling J, Williams TL, Bowtell G (1998) Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier–Stokes equations and Newton’s laws of motion. J Exp Biol 201:3143–3166

    Google Scholar 

  38. Eldredge JD (2006) Numerical simulations of undulatory swimming at moderate Reynolds number. Bioinspir Biomim 1(4)

  39. Borazjani I, Sotiropoulos F (2009) Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J Exp Biol 212(4):576–592

    Article  Google Scholar 

  40. Zhu Q et al (2002) Three-dimensional flow structures and vorticity control in fish-like swimming. J Fluid Mech 468:1–28

    MATH  MathSciNet  Google Scholar 

  41. Yang L, Su Y (2011) CFD simulation of flow features and vorticity structures in tuna-like swimming. China Ocean Eng 25(1):73–82

    Article  Google Scholar 

  42. Lauder GV (2011) Swimming hydrodynamics: Ten questions and the technical approaches needed to resolve them. Exp Fluids 51(1):23–35

    Article  Google Scholar 

  43. Hirt C, Amsden AA, Cook J (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253

    Article  MATH  Google Scholar 

  44. Donea J et al (2004) Encyclopedia of Computational Mechanics, vol 1: Fundamentals, Chapter 14: Arbitrary Lagrangian-Eulerian Methods. John Wiley & Sons, Ltd

  45. Ferziger JH, Peric M (1996) Computational methods for fluid dynamics (Book). Springer, Berlin, p 1996

    Book  Google Scholar 

  46. Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252

    Article  Google Scholar 

  47. Lauder GV, Tytell ED (2005) Hydrodynamics of undulatory propulsion. Fish Physiol 23:425–468

    Google Scholar 

  48. Barth T, Jespersen D (1989) The design and application of upwind schemes on unstructured meshes. In: AIAA, Aerospace Sciences Meeting, 27th, Reno, NV

  49. Darwish M, Moukalled F (2003) TVD schemes for unstructured grids. Int J Heat Mass Transf 46(4):599–611

    Article  MATH  Google Scholar 

  50. Thakur SS, Ouyang H, Liu J, Blosch E (2005) Computational techniques for complex transport phenomena. Cambridge University Press

  51. Issa RI, Gosman A, Watkins A (1986) The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J Comput Phys 62(1):66–82

    Article  MATH  MathSciNet  Google Scholar 

  52. Blasius H (1907) Grenzschichten in Flüssigkeiten mit kleiner Reibung. Inaugural-Dissertation… von H. Blasius. Druck von BG Teubner

  53. Zhang L et al (2009) A block LU-SGS implicit unsteady incompressible flow solver on hybrid dynamic grids for 2D external bio-fluid simulations. Comput Fluids 38(2):290–308

    Article  MATH  Google Scholar 

  54. Batina JT (1990) Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA J 28(8):1381–1388

    Article  Google Scholar 

  55. Arney DC, Flaherty JE (1988) An adaptive method with mesh moving and local mesh refinement for time-dependent partial differential equations. DTIC Document

  56. Adjerid S, Flaherty JE (1988) A local refinement finite-element method for two-dimensional parabolic systems. SIAM J Sci Stat Comput 9(5):792–811

    Article  MATH  MathSciNet  Google Scholar 

  57. Rai Mohan (1986) M., A conservative treatment of zonal boundaries for Euler equation calculations. J Comput Phys 62(2):472–503

    Article  MATH  MathSciNet  Google Scholar 

  58. Videler J, Hess F (1984) Fast continuous swimming of two pelagic predators, saithe (Pollachius virens) and mackerel (Scomber scombrus): a kinematic analysis. J Exp Biol 109(1):209–228

    Google Scholar 

  59. Borazjani I, Sotiropoulos F (2008) Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J Exp Biol 211(10):1541–1558

    Article  Google Scholar 

  60. Hunt JC, Wray A, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Studying Turbulence Using Numerical Simulation Databases, 2

  61. Anderson J et al (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360(1):41–72

    Article  MATH  MathSciNet  Google Scholar 

  62. Xiao Q, Liao W (2010) Numerical investigation of angle of attack profile on propulsion performance of an oscillating foil. Comput Fluids 39(8):1366–1380

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Abbaspour.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaspour, M., Ebrahimi, M. Comparative numerical analysis of the flow pattern and performance of a foil in flapping and undulating oscillations. J Mar Sci Technol 20, 257–277 (2015). https://doi.org/10.1007/s00773-014-0297-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-014-0297-7

Keywords

Navigation