Skip to main content
Log in

Determining modified reaction parameters for the real-time measurement of BTEX in biogas and nitrogen using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS)

  • General Paper
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

The increasing demand for high-quality biogas and the reduction of reliance on natural gas have driven the need for a well-defined framework to ensure conformity and quality of biogas by the introduction of traceable reference materials and methods across the community. Furthermore, there is a great need to quantify critical trace impurities in biogas. Here, we perform real-time measurements on reference gas standards containing trace hydrocarbons in biogas that are traceable to the international system of units using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). There are limited data on reaction rate constants in biogas matrices for SIFT-MS, and here we use the traceable gas standards to determine and compare the reaction rate constants of trace hydrocarbons in biogas and nitrogen. Here, we modify SIFT-MS constants for biogas avoiding the current 30 % bias and prevent the overestimation in the concentration of hydrocarbon amount fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioprod Biorefining 3:42–71. https://doi.org/10.1002/bbb.117

    Article  CAS  Google Scholar 

  2. Allen MR, Braithwaite A, Hills CC (1997) Trace organic compounds in landfill gas at seven UK waste disposal sites. Environ Sci Technol 31:1054–1061. https://doi.org/10.1021/es9605634

    Article  CAS  Google Scholar 

  3. Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agric Ecosyst Environ 118:173–182. https://doi.org/10.1016/j.agee.2006.05.007

    Article  CAS  Google Scholar 

  4. Arnold M, Kajolinna T (2010) Development of on-line measurement techniques for siloxanes and other trace compounds in biogas. Waste Manag 30:1011–1017. https://doi.org/10.1016/j.wasman.2009.11.030

    Article  CAS  PubMed  Google Scholar 

  5. Arrhenius K, Brown AS, van der Veen AMH (2016) Suitability of different containers for the sampling and storage of biogas and biomethane for the determination of the trace-level impurities—a review. Anal Chim Acta 902:22–32. https://doi.org/10.1016/j.aca.2015.10.039

    Article  CAS  PubMed  Google Scholar 

  6. Arrhenius K, Engelbrektsson J (2016) Development of analytical methods to gain insight into the role of terpenes in biogas plants. J Anal Bioanal Tech. https://doi.org/10.4172/2155-9872.1000324

    Article  Google Scholar 

  7. Arrhenius K et al (2017) Suitability of vessels and adsorbents for the short-term storage of biogas/biomethane for the determination of impurities—siloxanes, sulfur compounds, halogenated hydrocarbons. BTEX Biomass Bioenergy 105:127–135. https://doi.org/10.1016/j.biombioe.2017.06.025

    Article  CAS  Google Scholar 

  8. Bartolini F, Gava O, Brunori G (2017) Biogas and EU’s 2020 targets: evidence from a regional case study in Italy. Energy Policy 109:510–519. https://doi.org/10.1016/j.enpol.2017.07.039

    Article  Google Scholar 

  9. Billig E, Thran D, Pu P, Yu C (2017) The standardisation, production and utilisation of biomethane in Europe and China—a comprehensive analysis. Int J Oil Gas Coal Technol 14:110–129. https://doi.org/10.1504/ijogct.2017.081105

    Article  Google Scholar 

  10. Clark C, Zytner RG, McBean E (2012) Analyzing volatile organic siloxanes in landfill biogas. Can J Civ Eng 39:667–673. https://doi.org/10.1139/l2012-051

    Article  CAS  Google Scholar 

  11. Dewil R, AppelS L, BaeyenS J (2006) Energy use of biogas hampered by the presence of siloxanes. Energy Convers Manag 47:1711–1722. https://doi.org/10.1016/j.enconman.2005.10.016

    Article  CAS  Google Scholar 

  12. Divya D, Gopinath LR, Christy PM (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew Sust Energy Rev 42:690–699. https://doi.org/10.1016/j.rser.2014.10.055

    Article  CAS  Google Scholar 

  13. European Organization for Standardization (2016) EN 16723-1—Natural gas and biomethane for use in transport and biomethane for injection in the natural gas network—part 1: specifications for biomethane for injection in the natural gas network. Brussels, Belgium

  14. European Organization for Standardization (2017) EN 16723-2—Natural gas and biomethane for use in transport and biomethane for injection in the natural gas network—part 2: automotive fuels specifications. Brussels, Belgium

  15. European Organization for Standardization (2018) EN 17238—Proposed limit values for contaminants in biomethane based on health assessment criteria. Brussels, Belgium

  16. Evangelisti S, Lettieri P, Borello D, Clift R (2014) Life cycle assessment of energy from waste via anaerobic digestion: a UK case study. Waste Manag 34:226–237. https://doi.org/10.1016/j.wasman.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  17. Grenfell RJP, Milton MJT, Harling AM, Vargha GM, Brookes C, Quincey PG, Woods PT (2010) Standard mixtures of ambient volatile organic compounds in synthetic and whole air with stable reference values. J Geophys Res-Atmos 115:16. https://doi.org/10.1029/2009jd012933

    Article  Google Scholar 

  18. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484. https://doi.org/10.1016/j.biortech.2008.12.046

    Article  CAS  PubMed  Google Scholar 

  19. ISO 6142-1:2015 Gas analysis—preparation of calibration gas mixtures—part 1: gravimetric method for class I mixtures. International Organization for Standardization, Geneva, Switzerland

  20. ISO 19229:2015 Gas analysis—purity analysis and the treatment of purity data. International Organization for Standardization, Geneva, Switzerland

  21. Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568. https://doi.org/10.1016/j.biortech.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  22. Lakhouit A, Schirmer WN, Johnson TR, Cabana H, Cabral AR (2014) Evaluation of the efficiency of an experimental biocover to reduce BTEX emissions from landfill biogas. Chemosphere 97:98–101. https://doi.org/10.1016/j.chemosphere.2013.09.120

    Article  CAS  PubMed  Google Scholar 

  23. Langford VS, Gray JDC, Maclagan R, McEwan MJ (2013) Detection of siloxanes in landfill gas and biogas using SIFT-MS. Curr Anal Chem 9:558–564. https://doi.org/10.2174/15734110113099990020

    Article  CAS  Google Scholar 

  24. Lemmer A, Krumpel J (2017) Demand-driven biogas production in anaerobic filters. Appl Energy 185:885–894. https://doi.org/10.1016/j.apenergy.2016.10.073

    Article  CAS  Google Scholar 

  25. Lim C, Kim D, Song C, Kim J, Han J, Cha JS (2015) Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases. Appl Energy 139:17–29. https://doi.org/10.1016/j.apenergy.2014.10.084

    Article  CAS  Google Scholar 

  26. Linsinger T (2010) ERM Application Note 1, comparison of a measurement result with the certified value. Eur Ref Mater 1–2

  27. Marine S, Pedrouzo M, Marce RM, Fonseca I, Borrull F (2012) Comparison between sampling and analytical methods in characterization of pollutants in biogas. Talanta 100:145–152. https://doi.org/10.1016/j.talanta.2012.07.074

    Article  CAS  PubMed  Google Scholar 

  28. Meyer AKP, Ehimen EA, Holm-Nielsen JB (2017) Future European biogas: animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy. https://doi.org/10.1016/j.biombioe.2017.05.013

    Article  Google Scholar 

  29. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15:1513–1524. https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  30. Papurello D, Lanzini A, Tognana L, Silvestri S, Santarelli M (2015) Waste to energy: exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack. Energy 85:145–158. https://doi.org/10.1016/j.energy.2015.03.093

    Article  CAS  Google Scholar 

  31. Perez-Sanz FJ, Sarge SM, van der Veen A, Culleton L, Beaumont O, Haloua F (2019) First experimental comparison of calorific value measurements of real biogas with reference and field calorimeters subjected to different standard methods. Int J Therm Sci 135:72–82. https://doi.org/10.1016/j.ijthermalsci.2018.06.034

    Article  CAS  Google Scholar 

  32. Piechota G, Buczkowski R (2014) Development of chromatographic methods by using direct-sampling procedure for the quantification of cyclic and linear volatile methylsiloxanes in biogas as perspective for application in online systems. Int J Environ Anal Chem 94:837–851. https://doi.org/10.1080/03067319.2013.879296

    Article  CAS  Google Scholar 

  33. Piechota G, Iglniski B, Buczkowski R (2013) Development of measurement techniques for determination main and hazardous components in biogas utilised for energy purposes. Energy Convers Manag 68:219–226. https://doi.org/10.1016/j.enconman.2013.01.011

    Article  CAS  Google Scholar 

  34. Prince BJ, Milligan DB, McEwan MJ (2010) Application of selected ion flow tube mass spectrometry to real-time atmospheric monitoring. Rapid Commun Mass Spectrom 24:1763–1769. https://doi.org/10.1002/rcm.4574

    Article  CAS  PubMed  Google Scholar 

  35. Rasi S, Lantela J, Rintala J (2011) Trace compounds affecting biogas energy utilisation—a review. Energy Convers Manag 52:3369–3375. https://doi.org/10.1016/j.enconman.2011.07.005

    Article  CAS  Google Scholar 

  36. Rasi S, Seppala M, Rintala J (2013) Organic silicon compounds in biogases produced from grass silage, grass and maize in laboratory batch assays. Energy 52:137–142. https://doi.org/10.1016/j.energy.2013.01.015

    Article  CAS  Google Scholar 

  37. Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380. https://doi.org/10.1016/j.energy.2006.10.018

    Article  CAS  Google Scholar 

  38. Ross BM, Vermeulen N (2007) The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air. Rapid Commun Mass Spectrom 21:3608–3612. https://doi.org/10.1002/rcm.3255

    Article  CAS  PubMed  Google Scholar 

  39. Ryckebosch E, Drouillon M, Veruaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645. https://doi.org/10.1016/j.biombioe.2011.02.033

    Article  CAS  Google Scholar 

  40. Schweigkofler M, Niessner R (1999) Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis. Environ Sci Technol 33:3680–3685. https://doi.org/10.1021/es9902569

    Article  CAS  Google Scholar 

  41. Smith D, Spanel P (2005) Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom Rev 24:661–700. https://doi.org/10.1002/mas.20033

    Article  CAS  PubMed  Google Scholar 

  42. Storer M, Salmond J, Dirks KN, Kingham S, Epton M (2014) Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study. J Breath Res 8:7. https://doi.org/10.1088/1752-7155/8/3/037106

    Article  CAS  Google Scholar 

  43. van Andel I, van der Veen AMH, Zalewska ET (2012) A robot for weighing syringes used in reference gas mixture preparation. Metrologia 49:446–454. https://doi.org/10.1088/0026-1394/49/4/446

    Article  Google Scholar 

  44. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860. https://doi.org/10.1007/s00253-009-2246-7

    Article  CAS  PubMed  Google Scholar 

  45. Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour Technol 95:1–10. https://doi.org/10.1016/j.biortech.2004.02.010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. C. Allen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, N.D.C., Perkins, M., Bacquart, T. et al. Determining modified reaction parameters for the real-time measurement of BTEX in biogas and nitrogen using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). Accred Qual Assur 24, 361–368 (2019). https://doi.org/10.1007/s00769-019-01394-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-019-01394-8

Keywords

Navigation