Skip to main content

Advertisement

Log in

Phenolic compounds as potential adenosine deaminase inhibitors: molecular docking and dynamics simulation coupled with MM-GBSA calculations

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Adenosine deaminase (ADA) is a Zn2+-containing enzyme that catalyzes the irreversible deamination of adenosine to inosine or deoxyadenosine to deoxyinosine. In addition to this enzymatic function, ADA mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. ADA is implicated in cardiovascular pathologies such as atherosclerosis and certain types of cancers, including lymphoma and leukemia. To date, only two drugs (pentostatin and cladribine) have been approved for the treatment of hairy cell leukemia. In search of natural ADA inhibitors, we demonstrated the binding of selected phenolic compounds to the active site of ADA using molecular docking and molecular dynamics simulation. Our results show that phenolic compounds (chlorogenic acid, quercetin, and hyperoside) stabilized the ADA complex by forming persistent interactions with the catalytically essential Zn2+ ion. Furthermore, MM-GBSA ligand binding affinity calculations revealed that hyperoside had a comparable binding energy score (ΔG = − 46.56 ± 8.26 kcal/mol) to that of the cocrystal ligand in the ADA crystal structure (PDB ID: 1O5R) (ΔG = − 51.97 ± 4.70 kcal/mol). Similarly, chlorogenic acid exhibited a binding energy score (ΔG = − 18.76 ± 4.60 kcal/mol) comparable to those of the two approved ADA inhibitor drugs pentostatin (ΔG = − 14.54 ± 2.25 kcal/mol) and cladribine (ΔG = − 25.52 ± 4.10 kcal/mol) while quercetin was found to have modest binding affinity (ΔG = − 8.85 ± 7.32 kcal/mol). This study provides insights into the possible inhibitory potential of these phenolic compounds against ADA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data has been incorporated into the main texts.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AIU and GZ; methodology, AIU, NJP, CW; validation, AIU, CW; Validation and visualization, AIU, CW, investigation, AIU, NJP, CW, GZ; Funding; CW, writing—original draft preparation, AIU, NJP; writing—review and editing, CW, G.Z All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Chun Wu or Gokhan Zengin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling editor: F. Polticelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4616 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uba, A.I., Paradis, N.J., Wu, C. et al. Phenolic compounds as potential adenosine deaminase inhibitors: molecular docking and dynamics simulation coupled with MM-GBSA calculations. Amino Acids 55, 1729–1743 (2023). https://doi.org/10.1007/s00726-023-03310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-023-03310-4

Keywords

Navigation