Skip to main content
Log in

Dual effects of the tryptophan-derived bacterial metabolite indole on colonic epithelial cell metabolism and physiology: comparison with its co-metabolite indoxyl sulfate

  • Special Issue Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Indole, which is produced by the intestinal microbiota from l-tryptophan, is recovered at millimolar concentrations in the human feces. Indoxyl sulfate (IS), the main indole co-metabolite, can be synthesized by the host tissues. Although indole has been shown to restore intestinal barrier function in experimental colitis, little is known on the effects of indole and IS on colonic epithelial cell metabolism and physiology. In this study, we compared the effects of indole and IS on the human colonic epithelial HT-29 Glc−/+ and Caco-2 cell lines, exposed to these compounds for 1–48 h. Indole, but not IS, was cytotoxic at 5 mM, altering markedly colonocyte proliferation. Both molecules, used up to 2.5 mM, induced a transient oxidative stress in colonocytes, that was detected after 1 h, but not after 48 h exposure. This was associated with the induction after 24 h of the expression of glutathione reductase, heme oxygenase, and cytochrome P450 (CYP)1B1. Indole and IS used at 2.5 mM impaired colonocyte respiration by diminishing mitochondrial oxygen consumption and maximal respiratory capacity. Indole, but not IS, displayed a slight genotoxic effect on colonocytes. Indole, but not IS, increased transepithelial resistance in colonocyte monolayers. Indole and IS used at 2.5 mM, induced a secretion of the pro-inflammatory interleukin-8 after 3 h incubation, and an increase of tumor necrosis factor-α secretion after 48 h. Although our results suggest beneficial effect of indole on epithelial integrity, overall they indicate that indole and IS share adverse effects on colonocyte respiration and production of reactive oxygen species, in association with the induction of enzymes of the antioxidant defense system. This latter process can be viewed as an adaptive response toward oxidative stress. Both compounds increased the production of inflammatory cytokines from colonocytes. However, only indole, but not IS, affected DNA integrity in colonocytes. Since colonocytes little convert indole to IS, the deleterious effects of indole on colonocytes appear to be unrelated to its conversion to IS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adesso S, Ruocco M, Rapa SF, Dal Piaz F, Di Iorio BR, Popolo A, Autore G, Nishijima F, Pinto A, Marzocco S (2019) Effect of indoxyl sulfate on the repair and intactness of intestinal epithelial cells: role of reactive oxygen species’ release. Int J Mol Sci 20(9):2280

    Article  CAS  PubMed Central  Google Scholar 

  • Agus A, Planchais J, Sokol H (2018) Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23(6):716–724

    Article  CAS  PubMed  Google Scholar 

  • Andriamihaja M, Chaumontet C, Tome D, Blachier F (2009) Butyrate metabolism in human colon carcinoma cells: Implications concerning its growth-inhibitory effect. J Cell Physiol 218:58–65

    Article  CAS  PubMed  Google Scholar 

  • Andriamihaja M, Lan A, Beaumont M, Audebert M, Wong X, Yamada K, Yin Y, Tomé D, Carrasco-Pozo C, Gotteland M, Kong X, Blachier F (2015) The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic Biol Med 85:219–227

    Article  CAS  PubMed  Google Scholar 

  • Armand L, Andriamihaja M, Gellenoncourt S, Bitane V, Lan A, Blachier F (2019) In vitro impact of amino acid-derived bacterial metabolites on colonocyte mitochondrial activity, oxidative stress response and DNA integrity. Biochimica Et Biophysica Acta (BBA) - General Subjects 1863(8):1292–1301

    Article  CAS  Google Scholar 

  • Banoglu E, Jha GG, King RS (2001) Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur J Drug Metab Pharmacokinet 26(4):235–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal T, Alaniz RC, Wood TK, Jayaraman A (2010) The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA 107(1):228–233

    Article  CAS  PubMed  Google Scholar 

  • Barzilai A, Yamamoto K-I (2004) DNA damage responses to oxidative stress. DNA Repair 3(8):1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Beaumont M, Andriamihaja M, Lan A, Khodorova N, Audebert M, Blouin J-M, Grauso M, Lancha L, Benetti P-H, Benamouzig R, Tomé D, Bouillaud F, Davila A-M, Blachier F (2016) Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: the adaptive response. Free Radical Biol Med 93:155–164

    Article  CAS  Google Scholar 

  • Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica Et Biophysica Acta. Mol Cell Res 1865(5):721–733

    Article  CAS  Google Scholar 

  • Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33(4):547–562

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Beaumont M, Andriamihaja M, Davila AM, Lan A, Grauso M, Armand L, Benamouzig R, Tomé D (2017) Changes in the luminal environment of the colonic epithelial cells and physiopathological consequences. Am J Pathol 187(3):476–486

    Article  CAS  PubMed  Google Scholar 

  • Brial F, Le Lay A, Dumas M-E, Gauguier D (2018) Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell Mol Life Sci 75(21):3977–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulus H, Oguztuzun S, Güler Simsek G, Kilic M, Ada AO, Göl S, Kocdogan AK, Kaygın P, Bozer B, Iscan M (2019) Expression of CYP and GST in human normal and colon tumor tissues. Biotech Histochem 94(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Chappell CL, Darkoh C, Shimmin L, Farhana N, Kim D-K, Okhuysen PC, Hixson J (2016) Fecal indole as a biomarker of susceptibility to cryptosporidium infection. Infect Immun 84(8):2299–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T-H, Ma M-C, Liao M-T, Zheng C-M, Lu K-C, Liao C-H, Hou Y-C, Liu W-C, Lu C-L (2020) Indoxyl sulfate, a tubular toxin, contributes to the development of chronic kidney disease. Toxins 12(11):684

    Article  CAS  PubMed Central  Google Scholar 

  • Darkoh C, Chappell C, Gonzales C, Okhuysen P (2015) A rapid and specific method for the detection of indole in complex biological samples. Appl Environ Microbiol 81:8093–8097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabor F, Stangl M, Wirth M (1998) Lectin-mediated bioadhesion: Binding characteristics of plant lectins on the enterocyte-like cell lines Caco-2, HT-29 and HCT-8. J Control Release 55(2–3):131–142

    Article  CAS  PubMed  Google Scholar 

  • Gillam EM, Notley LM, Cai H, De Voss JJ, Guengerich FP (2000) Oxidation of indole by cytochrome P450 enzymes. Biochemistry 39(45):13817–13824

    Article  CAS  PubMed  Google Scholar 

  • Grauso M, Lan A, Andriamihaja M, Bouillaud F, Blachier F (2019) Hyperosmolar environment and intestinal epithelial cells: impact on mitochondrial oxygen consumption, proliferation, and barrier function in vitro. Sci Rep 9(1):11360

    Article  PubMed  PubMed Central  Google Scholar 

  • Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W, Van de Wiele T, Verbeke F, Speeckaert M, Joossens M, Couttenye MM, Vaneechoutte M, Glorieux G (2020) Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int 97(6):1230–1242

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4):199–218

    Article  CAS  PubMed  Google Scholar 

  • Hobby GP, Karaduta O, Dusio GF, Singh M, Zybailov BL, Arthur JM (2019) Chronic kidney disease and the gut microbiome. Am J Physiol Renal Physiol 316(6):F1211–F1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamka M, Kokot M, Kaczmarek N, Bermagambetova S, Nowak JK, Walkowiak J (2021) The effect of sodium butyrate enemas compared with placebo on disease activity, endoscopic scores, and histological and inflammatory parameters in inflammatory bowel diseases: a systematic review of randomised controlled trials. Complement Med Res 28(4):344–356

    Article  PubMed  Google Scholar 

  • Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD (2010) Mitochondrial proton and electron leaks. Essays Biochem 47:53–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Y, Yin W, Liang Y, Sun L, Yin Y, Zhang W (2020) Anti-inflammatory and anti-oxidative activity of indole-3-acetic acid involves induction of HO-1 and neutralization of free radicals in RAW264.7 cells. Int J Mol Sci 21(5):1579

    Article  CAS  PubMed Central  Google Scholar 

  • King LJ, Parke DV, Williams RT (1966) The metabolism of [2-14C] indole in the rat. Biochem J 98(1):266–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lano G, Burtey S, Sallée M (2020) Indoxyl sulfate, a uremic endotheliotoxin. Toxins 12(4):229

    Article  CAS  PubMed Central  Google Scholar 

  • Lee J-H, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34(4):426–444

    Article  CAS  PubMed  Google Scholar 

  • Leong SC, Sirich TL (2016) Indoxyl sulfate-review of toxicity and therapeutic strategies. Toxins (basel) 8(12):358

    Article  Google Scholar 

  • Leschelle X, Delpal S, Goubern M, Blottière HM, Blachier F (2000) Butyrate metabolism upstream and downstream acetyl-CoA synthesis and growth control of human colon carcinoma cells: butyrate metabolism and colon cell growth. Eur J Biochem 267(21):6435–6442

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Blouin JM, Santacruz A, Lan A, Andriamihaja M, Wilkanowicz S, Benetti PH, Tomé D, Sanz Y, Blachier F, Davila AM (2014) High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection. Am J Physiol Gastrointest Liver Physiol 307(4):G459–G470

    Article  CAS  PubMed  Google Scholar 

  • Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672

    Article  CAS  PubMed  Google Scholar 

  • McNabney SM, Henagan TM (2017) Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients 9(12):1348

    Article  PubMed Central  Google Scholar 

  • Mimoun S, Andriamihaja M, Chaumontet C, Atanasiu C, Benamouzig R, Blouin JM, Tomé D, Bouillaud F, Blachier F (2012) Detoxification of H(2)S by differentiated colonic epithelial cells: Implication of the sulfide oxidizing unit and of the cell respiratory capacity. Antioxid Redox Signal 17(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277

    Article  PubMed  PubMed Central  Google Scholar 

  • Poesen R, Mutsaers HAM, Windey K, van den Broek PH, Verweij V, Augustijns P, Kuypers D, Jansen J, Evenepoel P, Verbeke K, Meijers B, Masereeuw R (2015) The influence of dietary protein intake on mammalian tryptophan and phenolic metabolites. PLoS ONE 10(10):e0140820

    Article  PubMed  PubMed Central  Google Scholar 

  • Portune KJ, Beaumont M, Davila A-M, Tomé D, Blachier F, Sanz Y (2016) Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin. Trends Food Sci Technol 57:213–232

    Article  CAS  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biol Med 49(11):1603–1616

    Article  CAS  Google Scholar 

  • Rosenberg DW, Mankowski DC (1994) Induction of cyp2e-1 protein in mouse colon. Carcinogenesis 15:73–78

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JC, DiNatale BC, Murray IA, Flaveny CA, Liu Q, Laurenzana EM, Lin JM, Strom SC, Omiecinski CJ, Amin S, Perdew GH (2010) The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry 49(2):393–400

    Article  CAS  PubMed  Google Scholar 

  • Shimada Y, Kinoshita M, Harada K, Mizutani M, Masahata K, Kayama H, Takeda K (2013) Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 8(11):e80604

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG, Hiwale AA, Saiyed T, Patel P, Vijay-Kumar M, Langille MGI, Douglas GM, Cheng X, Rouchka EC, Waigel SJ, Dryden GW, Alatassi H, Zhang H-G, Haribabu B et al (2019) Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun 10(1):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD (2015) Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radical Biol Med 88(0 0):108–146

    Article  CAS  Google Scholar 

  • Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J, European Uremic Toxin Work Group (2008) A bench to bedside view of uremic toxins. J Am Soc Nephrol JASN 19(5):863–870

    Article  PubMed  Google Scholar 

  • Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G (2014) The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol 25(9):1897–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43(4):621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield-Cargile CM, Cohen ND, Chapkin RS, Weeks BR, Davidson LA, Goldsby JS, Hunt CL, Steinmeyer SH, Menon R, Suchodolski JS, Jayaraman A, Alaniz RC (2016) The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy. Gut Microbes 7(3):246–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapletal O, Tylichová Z, Neča J, Kohoutek J, Machala M, Milcová A, Pokorná M, Topinka J, Moyer MP, Hofmanová J, Kozubík A, Vondráček J (2017) Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzo[a]pyrene via its histone deacetylase activity in colon epithelial cell models. Arch Toxicol 91(5):2135–2150

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Armand.

Ethics declarations

Conflict of interest

None of the authors declare conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Handling editor: G. Wu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armand, L., Fofana, M., Couturier-Becavin, K. et al. Dual effects of the tryptophan-derived bacterial metabolite indole on colonic epithelial cell metabolism and physiology: comparison with its co-metabolite indoxyl sulfate. Amino Acids 54, 1371–1382 (2022). https://doi.org/10.1007/s00726-021-03122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-021-03122-4

Keywords

Navigation