Skip to main content
Log in

Chemical approaches in the development of natural nontoxic peptide Polybia-MP1 as a potential dual antimicrobial and antitumor agent

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polybia-MP1 is a well-known natural antimicrobial peptide that has been intensively studied recently due to its therapeutic potential. MP1 exhibited not only potent antibacterial activity but also antifungal and anticancer properties. More importantly, MP1 shows relatively low hemolytic activity compared to other antimicrobial peptides having a similar origin. Thus, besides investigating possible mechanisms of action, great efforts have been invested to develop this peptide to become more “druggable”. In this review, we summarized all the chemical approaches, both success and failure, that using MP1 as a lead compound to create modified analogs with better pharmacological properties. As there have been thousands of natural AMPs found and deposited in numerous databases, such useful information in both the success and failure will provide insight into the research and development of antimicrobial peptides and guiding for the next steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvares DS, Fanani ML, Neto JR, Wilke N (2016) The interfacial properties of the peptide Polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions. Biochim Et Biophys Acta (BBA) 1858(2):393–402

    CAS  Google Scholar 

  • Alvares DS, Wilke N, Neto JR, Fanani ML (2017a) The insertion of Polybia-MP1 peptide into phospholipid monolayers is regulated by its anionic nature and phase state. Chem Phys Lipids 207:38–48

    CAS  PubMed  Google Scholar 

  • Alvares DS, Neto JR, Ambroggio EE (2017b) Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide. Biochim Et Biophys Acta (BBA) 1859(6):1067–1074

    CAS  Google Scholar 

  • Annunziato G, Costantino G (2020) Antimicrobial peptides (AMPs): a patent review (2015–2020). Expert Opin Therap Pat 30(12):931–947

    CAS  Google Scholar 

  • Chapuis H, Slaninová J, Bednárová L, Monincová L, Buděšínský M, Čeřovský V (2012) Effect of hydrocarbon stapling on the properties of α-helical antimicrobial peptides isolated from the venom of hymenoptera. Amino Acids 43(5):2047–2058

    CAS  PubMed  Google Scholar 

  • Chen X, Zhang L, Wu Y, Wang L, Ma C, Xi X, Bininda-Emonds ORP, Shaw C, Chen T, Zhou M (2018) Evaluation of the bioactivity of a mastoparan peptide from wasp venom and of its analogues designed through targeted engineering. Int J Biol Sci 14(6):599–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa F, Teixeira C, Gomes P, Martins MCL (2019) Clinical application of AMPs. In: Matsuzaki K (ed) Antimicrobial peptides: basics for clinical application. Springer, Singapore, pp 281–298

    Google Scholar 

  • da Silva AVR, De Souza BM, dos Santos Cabrera MP, Dias NB, Gomes PC, Neto JR, Stabeli RG, Palma MS (2014a) The effects of the C-terminal amidation of mastoparans on their biological actions and interactions with membrane-mimetic systems. Biochim Et Biophys Acta (BBA) 1838(10):2357–2368

    Google Scholar 

  • da Silva AMB, Silva-Gonçalves LC, Oliveira FA, Arcisio-Miranda M (2018) Pro-necrotic activity of cationic mastoparan peptides in human glioblastoma multiforme cells via membranolytic action. Mol Neurobiol 55(7):5490–5504

    PubMed  Google Scholar 

  • de Souza BM, dos Santos Cabrera MP, Neto JR, Palma MS (2011) Investigating the effect of different positioning of lysine residues along the peptide chain of mastoparans for their secondary structures and biological activities. Amino Acids 40(1):77–90

    CAS  PubMed  Google Scholar 

  • Dinh TTT, Kim D-H, Luong HX, Lee B-J, Kim Y-W (2015) Antimicrobial activity of doubly-stapled alanine/lysine-based peptides. Bioorg Med Chem Lett 25(18):4016–4019

    CAS  PubMed  Google Scholar 

  • dos Santos MPC, Costa STB, de Souza BM, Palma MS, Ruggiero JR, Neto JR (2008) Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1. Eur Biophys J 37(6):879

    Google Scholar 

  • dos Santos MPC, Alvares DS, Leite NB, Monson de Souza B, Palma MS, Riske KA, Neto JR (2011) New insight into the mechanism of action of wasp mastoparan peptides: lytic activity and clustering observed with giant vesicles. Langmuir 27(17):10805–10813

    Google Scholar 

  • dos Santos MP, Arcisio-Miranda M, Gorjão R, Leite NB, de Souza BM, Curi R, Procopio J, Neto JR, Palma MS (2012) Influence of the bilayer composition on the binding and membrane disrupting effect of polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity. Biochemistry 51(24):4898–4908

    Google Scholar 

  • Etzerodt T, Henriksen JR, Rasmussen P, Clausen MH, Andresen TL (2011) Selective acylation enhances membrane charge sensitivity of the antimicrobial peptide mastoparan-x. Biophys J 100(2):399–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24(18):2101–2102

    CAS  PubMed  Google Scholar 

  • Hilchie AL, Sharon AJ, Haney EF, Hoskin DW, Bally MB, Franco OL, Corcoran JA, Hancock REW (2016) Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim Et Biophys Acta (BBA) 1858(12):3195–3204

    CAS  Google Scholar 

  • Hirano M, Saito C, Goto C, Yokoo H, Kawano R, Misawa T, Demizu Y (2020) Rational design of helix-stabilized antimicrobial peptide foldamers containing α, α-disubstituted amino acids or side-chain stapling. ChemPlusChem 85:2731–2736

    CAS  PubMed  Google Scholar 

  • Hirano M, Saito C, Yokoo H, Goto C, Kawano R, Misawa T, Demizu Y (2021) Development of antimicrobial stapled peptides based on magainin 2 sequence. Molecules 26(2):444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irazazabal LN, Porto WF, Ribeiro SM, Casale S, Humblot V, Ladram A, Franco OL (2016) Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan. Biochim Et Biophys Acta (BBA) 1858(11):2699–2708

    CAS  Google Scholar 

  • Jia F, Wang J, Peng J, Zhao P, Kong Z, Wang K, Yan W, Wang R (2017) D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin 49(10):916–925

    CAS  PubMed  Google Scholar 

  • Kazemzadeh-Narbat M, Cheng H, Chabok R, Alvarez MM, de la Fuente-Nunez C, Phillips KS, Khademhosseini A (2021) Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Crit Rev Biotechnol 41(1):94–120

    CAS  PubMed  Google Scholar 

  • Kohn EM, Shirley DJ, Arotsky L, Picciano AM, Ridgway Z, Urban MW, Carone BR, Caputo GA (2018) Role of cationic side chains in the antimicrobial activity of C18G. Molecules 23(2):329

    PubMed Central  Google Scholar 

  • Konno K, Hisada M, Naoki H, Itagaki Y, Kawai N, Miwa A, Yasuhara T, Morimoto Y, Nakata Y (2000) Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado). Toxicon 38(11):1505–1515

    CAS  PubMed  Google Scholar 

  • Kovacs JM, Mant CT, Hodges RS (2006) Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or conformational effects. Pept Sci 84(3):283–297

    CAS  Google Scholar 

  • Krauson AJ, Hall OM, Fuselier T, Starr CG, Kauffman WB, Wimley WC (2015) Conformational fine-tuning of pore-forming peptide potency and selectivity. J Am Chem Soc 137(51):16144–16152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazzaro BP, Zasloff M, Rolff J (2020) Antimicrobial peptides: Application informed by evolution. Science 368(6490):eaau480

    Google Scholar 

  • Lee JK, Gopal R, Park S-C, Ko HS, Kim Y, Hahm K-S, Park Y (2013) A proline-hinge alters the characteristics of the amphipathic α-helical AMPs. PLoS ONE 8(7):e67597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leite NB, dos lvares DS, de Souza BM, Palma MS, Neto JR (2014) Effect of the aspartic acid D2 on the affinity of Polybia-MP1 to anionic lipid vesicles. Eur Biophys J 43(4):121–130

    CAS  PubMed  Google Scholar 

  • Leite NB, Aufderhorst-Roberts A, Palma MS, Connell SD, Neto JR, Beales PA (2015) PE and PS lipids synergistically enhance membrane poration by a peptide with anticancer properties. Biophys J 109(5):936–947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Zhang W, Gou S, Huang H, Yao J, Yang Z, Liu H, Zhong C, Liu B, Ni J, Wang R (2017) Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. J Pept Sci 23(11):824–832

    CAS  PubMed  Google Scholar 

  • Lu J, Xu H, Xia J, Ma J, Xu J, Li Y, Feng J (2020) D- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front Microbiol 11:2869

    Google Scholar 

  • Luong HX, Kim D-H, Lee B-J, Kim Y-W (2016) Antimicrobial and Hemolytic Activity of Stapled Heptapeptide Dimers. Bull Korean Chem Soc 37(8):1199–1203

    CAS  Google Scholar 

  • Luong HX, Kim D-H, Lee B-J, Kim Y-W (2017a) Antimicrobial activity and stability of stapled helices of polybia-MP1. Arch Pharmacal Res 40(12):1414–1419

    CAS  Google Scholar 

  • Luong HX, Kim D-H, Mai NT, Lee B-J, Kim Y-W (2017b) Mono-substitution effects on antimicrobial activity of stapled heptapeptides. Arch Pharmacal Res 40(6):713–719

    CAS  Google Scholar 

  • Luong HX, Kim D-H, Lee B-J, Kim Y-W (2018) Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides. Arch Pharmacal Res 41(11):1092–1097

    CAS  Google Scholar 

  • Luong HX, Thanh TT, Tran TH (2020) Antimicrobial peptides: advances in development of therapeutic applications. Life Sci 260:118407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlapuu M, Björn C, Ekblom J (2020) Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol 40(7):978–992

    CAS  PubMed  Google Scholar 

  • Mendes MA, de Souza BM, Marques MR, Palma MS (2004) Structural and biological characterization of two novel peptides from the venom of the neotropical social wasp Agelaia pallipes pallipes. Toxicon 44(1):67–74

    CAS  PubMed  Google Scholar 

  • Mól AR, Castro MS, Fontes W (2018) NetWheels: a web application to create high quality peptide helical wheel and net projections. bioRxiv. https://doi.org/10.1101/416347

    Article  Google Scholar 

  • Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 19:311–322

    CAS  PubMed  Google Scholar 

  • Mourtada R, Herce HD, Yin DJ, Moroco JA, Wales TE, Engen JR, Walensky LD (2019) Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nat Biotechnol 37(10):1186–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roudi R, Syn NL, Roudbary M (2017) Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol 8:1320

    PubMed  PubMed Central  Google Scholar 

  • Silva T, Magalhães B, Maia S, Gomes P, Nazmi K, Bolscher JGM, Rodrigues PN, Bastos M, Gomes MS (2014b) Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob Agents Chemother 58(6):3461

    PubMed  PubMed Central  Google Scholar 

  • Souza BM, Mendes MA, Santos LD, Marques MR, César LMM, Almeida RNA, Pagnocca FC, Konno K, Palma MS (2005) Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 26(11):2157–2164

    CAS  PubMed  Google Scholar 

  • Souza BMD, Cabrera MPDS, Gomes PC, Dias NB, Stabeli RG, Leite NB, Neto JR, Palma MS (2015) Structure–activity relationship of mastoparan analogs: effects of the number and positioning of Lys residues on secondary structure, interaction with membrane-mimetic systems and biological activity. Peptides 72:164–174

    PubMed  Google Scholar 

  • Stone TA, Cole GB, Nguyen HQ, Sharpe S, Deber CM (2018) Influence of hydrocarbon-stapling on membrane interactions of synthetic antimicrobial peptides. Bioorg Med Chem 26(6):1189–1196

    CAS  PubMed  Google Scholar 

  • Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML (2020) Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules (basel, Switzerland) 25(12):2850

    CAS  Google Scholar 

  • Tuerkova A, Kabelka I, Králová T, Sukeník L, Pokorná Š, Hof M, Vácha R (2020) Effect of helical kink in antimicrobial peptides on membrane pore formation. Elife 9:e47946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeer LS, Lan Y, Abbate V, Ruh E, Bui TT, Wilkinson LJ, Kanno T, Jumagulova E, Kozlowska J, Patel J, McIntyre CA, Yam WC, Siu G, Atkinson RA, Lam JKW, Bansal SS, Drake AF, Mitchell GH, Mason AJ (2012) Conformational flexibility determines selectivity and antibacterial, antiplasmodial, and anticancer potency of cationic α-helical peptides. J Biol Chem 287(41):34120–34133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wade D, Boman A, Wåhlin B, Drain CM, Andreu D, Boman HG, Merrifield RB (1990) All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci 87(12):4761

    CAS  PubMed  Google Scholar 

  • Wang K-R, Zhang B-Z, Zhang W, Yan J-X, Li J, Wang R (2008) Antitumor effects, cell selectivity and structure–activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29(6):963–968

    CAS  PubMed  Google Scholar 

  • Wang K-R, Yan J-X, Zhang B-Z, Song J-J, Jia P-F, Wang R (2009) Novel mode of action of polybia-MPI, a novel antimicrobial peptide, in multi-drug resistant leukemic cells. Cancer Lett 278(1):65–72

    CAS  PubMed  Google Scholar 

  • Wang K, Yan J, Dang W, Xie J, Yan B, Yan W, Sun M, Zhang B, Ma M, Zhao Y, Jia F, Zhu R, Chen W, Wang R (2014) Dual antifungal properties of cationic antimicrobial peptides polybia-MPI: Membrane integrity disruption and inhibition of biofilm formation. Peptides 56:22–29

    CAS  PubMed  Google Scholar 

  • Wenzel M, Schriek P, Prochnow P, Albada HB, Metzler-Nolte N, Bandow JE (2016) Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide. Biochim Et Biophys Acta (BBA) 1858(5):1004–1011

    CAS  Google Scholar 

  • Wu Y, Han M-F, Liu C, Liu T-Y, Feng Y-F, Zou Y, Li B, Liao H-L (2017) Design, synthesis, and antiproliferative activities of stapled melittin peptides. RSC Adv 7(28):17514–17518

    CAS  Google Scholar 

  • Yu K, Kim Y, Kang S, Park N, Shin J (2000) Relationship between the tertiary structures of mastoparan B and its analogs and their lytic activities studied by NMR spectroscopy. J Pept Res 55(1):51–62

    CAS  PubMed  Google Scholar 

  • Zhao Y, Zhang M, Qiu S, Wang J, Peng J, Zhao P, Zhu R, Wang H, Li Y, Wang K, Yan W, Wang R (2016) Antimicrobial activity and stability of the d-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express 6(1):122

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is funded by The PHENIKAA University Foundation for Science and Technology Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong T. Tung.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Human and animals rights

This review article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling editor: P. Meffre.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, H.L., Duc, T.D., Thuy, A.M. et al. Chemical approaches in the development of natural nontoxic peptide Polybia-MP1 as a potential dual antimicrobial and antitumor agent. Amino Acids 53, 843–852 (2021). https://doi.org/10.1007/s00726-021-02995-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-021-02995-9

Keywords

Navigation