Skip to main content
Log in

Synthesis and evaluation of tumor-homing peptides for targeting prostate cancer

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

High toxicity caused by chemotherapeutic drugs and the acquisition of drug resistance by cancer cells are the major drawbacks in cancer therapy. A promising approach to overcome the posed barriers is conjugating tumor-homing peptides to drugs or nanocarriers. Such high-affinity peptides can specifically target surface markers overexpressed by cancer cells, ensuring a rapid and cancer-specific uptake of the drugs. Since prostate-specific membrane antigen (PSMA) is overexpressed by aggressive prostate cancer cells, targeting this surface protein with peptide conjugates can lead to the development of effective strategies against prostate cancer. In this study, we aimed to determine which PSMA-binding peptide among peptides 563, 562 and 9-mer, show the highest selectivity towards PSMA using 22Rv1 prostate cancer cells, a cell line with moderate PSMA levels. Tumor-homing peptides were synthesized by fluorenylmethoxycarbonyl-based solid-phase peptide synthesis (Fmoc-SPPS) strategy, and evaluated for their prostate cancer cell-specific targeting efficiencies by flow cytometry. Our results showed that the PSMA-binding capacity of peptide 563 was superior to those of 562, 9-mer, and 5-mer; therefore, can be utilized as a potent-targeting agent not only in the treatment of high PSMA positive but also moderate PSMA positive prostate cancer tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barrio M, Fendler WP, Czernin J, Herrmann K (2016) Prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy of prostate cancer. Expert Rev Mol Diagn 16(11):1177–1188

    Article  CAS  Google Scholar 

  • Bernard D, Pourtier-Manzanedo A, Gil J, Beach DH (2003) Myc confers androgen-independent prostate cancer cell growth. J Clin Investig 112(11):1724–1731

    Article  CAS  Google Scholar 

  • Burger MJ, Tebay MA, Keith PA, Samaratunga HM, Clements J, Lavin MF, Gardiner RA (2002) Expression analysis of δ-catenin and prostate-specific membrane antigen: their potential as diagnostic markers for prostate cancer. Int J Cancer 100(2):228–237

    Article  CAS  Google Scholar 

  • Carter R, Feldman A, Coyle J (1996) Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 93(2):749–753

    Article  CAS  Google Scholar 

  • Castranes MA, Copeland BT, Chowdhury WH, Liu MM, Rodriguez R, Pomper MG, Lupold SE, Foss CA (2016) Characterization of a novel metastatic prostate cancer cell line of LNCaP origin. Prostate 76(2):215–225

    Article  Google Scholar 

  • Cultrara CN, Shah S, Antuono G, Heller CJ, Ramos JA, Samuni U, Zilberberg J, Sabatino D (2019) Size Matters: arginine-derived peptides targeting the PSMA receptor can efficiently complex but not transfect siRNA. Nucleic Acids 18:863–870

    Article  CAS  Google Scholar 

  • Dellis A, Zagouri F, Liontos M, Mitropoulos D, Bamias A, Papatsoris AG (2018) Management of advanced prostate cancer: a systematic review of existing guidelines and recommendations. Cancer Treat Rev 73:54–61

    Article  Google Scholar 

  • Denmeade SR, Isaacs JT (2002) A history of prostate cancer treatment. Nat Rev Cancer 2(5):389–396

    Article  CAS  Google Scholar 

  • Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH, Larson SM, Sawyers CL (2011) Non-invasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci 108(23):9578–9582

    Article  CAS  Google Scholar 

  • Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1(1):34–45

    Article  CAS  Google Scholar 

  • Ferreira HT, Oliveira Freitas LB, Fernandes RS, Santos VM, Resende JM, Cardoso VN, Barros ALB, Sousa EMB (2019) Boron nitride nanotube-CREKA peptide as an effective target system to metastatic breast cancer. J Pharm Investig 50:469–480

    Article  Google Scholar 

  • Gao Y, Li Y, Li Y, Yuan L, Zhou Y, Li J, Zhao L, Zhang C, Li X, Liu Y (2015) PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking. Nanoscale 7(2):597–612

    Article  CAS  Google Scholar 

  • Gorges TM, Riethdorf S, Ahsen O, Nastały P, Röck K, Boede M, Peine S, Kuske A, Schmid E, Kneip C, König F, Rudolph M, Pantel K (2016) Heterogeneous PSMA expression on circulating tumor cells—a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer. Oncotarget 7(23):34930–34941

    Article  Google Scholar 

  • Haberkorn U, Eder M, Kopka K, Babich JW, Eisenhut M (2016) New strategies in prostate cancer: Prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy. Clin Cancer Res 22(1):9–15

    Article  CAS  Google Scholar 

  • Harris WP, Mostaghel EA, Nelson PS, Montgomery B (2009) Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6(2):76–85

    Article  CAS  Google Scholar 

  • Henry MD, Wen S, Silva MD, Chandra S, Milton M, Worland PJ (2004) A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Can Res 64(21):7995–8001

    Article  CAS  Google Scholar 

  • Hynds RE, Vladimirou E, Janes SM (2018) The secret lives of cancer cell lines. Disease Models Mech 11(11):dmm037366

    Article  CAS  Google Scholar 

  • Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Analytical Biochem 34(2):595–598

    Article  CAS  Google Scholar 

  • Kiess AP, Banerjee SR, Mease RC, Rowe SP, Rao A, Foss CA, Chen Y, Yang X, Cho SY, Nimmagadda S, Pomper MG (2015) Prostate-specific membrane antigen as a target for cancer imaging and therapy. Q J Nucl Med Mol Imaging 59(3):241–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litwin MS, Tan HJ (2017) The diagnosis and treatment of prostate cancer: a review. JAMA - J Am Med Assoc 317(24):2532–2542

    Article  Google Scholar 

  • Lupold S, Rodriguez R (2004) Disulfide-constrained peptides that bind to the extracellular portion of the prostate-specific membrane antigen. Mol Cancer Ther 3(5):597–603

    CAS  PubMed  Google Scholar 

  • O’Keefe DS, Bacich DJ, Huang SS, Heston WDW (2018) A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies. J Nucl Med 59(7):1007–1013

    Article  CAS  Google Scholar 

  • Pagoto A, Tripepi M, Stefania R, Lanzardo S, Longo DL, Garello F, Porpiglia F, Manfredi M, Aime S, Terreno E (2018) An efficient MRI agent targeting extracellular markers in prostate adenocarcinoma. Magn Reson Med 81:1935–1946

    Article  Google Scholar 

  • Pilat MJP, Kamradt JM, Pienta KJ (1998) Hormone resistance in prostate cancer. Cancer Metastasis Rev 17(4):373–381

    Article  CAS  Google Scholar 

  • Rajasekaran AK, Anilkumar G, Christiansen J (2005) Is prostate-specific membrane antigen a multifunctional protein? Am J Physiol Cell Physiol 288(5):C975-981

    Article  CAS  Google Scholar 

  • Savarese DM, Halabi S, Hars V, Akerley WL, Taplin M, Godley PA, Hussain A, Small EJ, Vogelzang NJ (2001) Hydrocortisone in men with hormone-refractory prostate cancer: a final report of CALGB 9780. J Clin Oncol 19(9):2509–2516

    Article  CAS  Google Scholar 

  • Shen D, Xie F, Edwards WB (2013) Evaluation of phage display discovered peptides as ligands for prostate-specific membrane antigen (PSMA). PLoS ONE 8(7):1–8

    Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics. A Cancer J Clin 69(1):7–34

    Article  Google Scholar 

  • Silver DA, Pellicer I, Fair WR, Heston WDW, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85

    CAS  PubMed  Google Scholar 

  • Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, Derfus AM, Yang M, Hoffman RM, Bhatia S, Sailor MJ, Ruoslahti E (2006) Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA 104(3):932–936

    Article  Google Scholar 

  • Telci D, Collighan RJ, Basaga H, Griffin M (2009) Increased TG2 expression can result in induction of transforming growth factor 1, causing increased synthesis and deposition of matrix proteins, which can be regulated by nitric oxide. J Biol Chem 284(43):29547–29558

    Article  CAS  Google Scholar 

  • Wenger SL, Senft JR, Sargent LM, Bamezai R, Bairwa N, Grant SG (2004) Comparison of established cell lines at different passages by karyotype and comparative genomic hybridization. Biosci Rep 24(6):631–639

    Article  CAS  Google Scholar 

  • Wu X, Yu G, Lindner D, Brady-Kalnay SM, Zhang Q, Lu ZR (2014) Peptide targeted high-resolution molecular imaging of prostate cancer with MRI. Am J Nuclear Med Mole Imaging 4(6):525–536

    Google Scholar 

  • Wüstemann T, Haberkorn U, Babich J, Mier W (2018) Targeting prostate cancer: prostate-specific membrane antigen based diagnosis and therapy. Med Res Rev 39(1):40–69

    Article  Google Scholar 

  • Xu L, Wang Z, Li XF, He X, Guan LL, Tuo JL, Wang Y, Luo Y, Zhong HL, Qiu SP, Cao KY (2013) Screening and identification of significant genes related to tumor metastasis and PSMA in prostate cancer using microarray analysis. Oncol Rep 30(4):1920–1928

    Article  CAS  Google Scholar 

  • Yamamichi F, Matsuoka T, Shigemura K, Kawabata M, Shirakawa T, Fujisawa M (2012) Potential establishment of lung metastatic xenograft model of androgen receptor-positive and androgen-independent prostate cancer (C4–2B). Urology 80(4):951.e1-951.e7

    Article  Google Scholar 

  • Zhu Y, Sun Y, Chen Y, Liu W, Jiang J, Guan W, Zhang Z, Duan Y (2015) In vivo molecular imaging of prostate cancer by targeting PSMA with polypeptide-labeled superparamagnetic iron oxide nanoparticles. Int J Mol Sci 16(5):9573–9587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ayla Burcin Asutay for her technical support in flow cytometry.

Funding

This study is funded by TÜBİTAK under Grant number 315S049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Telci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

No approval of human/animal use protocols is required.

Informed consent

No informed consent is required for this study.

Additional information

Handling editor: E. Agostinelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezir, A.E., Khalily, M.P., Gulyuz, S. et al. Synthesis and evaluation of tumor-homing peptides for targeting prostate cancer. Amino Acids 53, 645–652 (2021). https://doi.org/10.1007/s00726-021-02971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-021-02971-3

Keywords

Navigation