Skip to main content
Log in

Novel stable analogues of the neurotensin C-terminal hexapeptide containing unnatural amino acids

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Neurotensin (NT) (pGlu–Leu–Tyr–Glu–Asn–Lys–Pro–Arg–Arg–Pro–Tyr–Ile–Leu) exerts a dual function as a neurotransmitter/neuromodulator in the central nervous system and as a hormone/cellular mediator in periphery. This dual function of NT establishes a connection between brain and peripheral tissues that renders this peptide a central player in energy homeostasis. Many biological actions of NT are mediated through its interaction with three types of NT receptors (NTS receptors). Despite its role in energy homeostasis, NT has a short half-life that hampers further determination of the biological actions of this peptide and its receptors in brain and periphery. The short half-life of NT is due to the proteolytic degradation of its C-terminal side by several endopeptidases. Therefore, it is important to synthesize NT analogues with resistant bonds against metabolic deactivation. Based on these findings, we herein report the synthesis of ten linear, two cyclic and two dimeric analogues of NT with modifications in its structure that improve their metabolic stability, while retaining the ability to bind to NTS receptors. Modifications at position 11 (introduction of d-Tyrosine (OEthyl) [d-Tyr(Et)] or d-1-naphtylalanine [d-1-Nal] were combined with introduction of a l-Lysine or a d-Arginine at positions 8 or 9, and 1-[2-(aminophenyl)-2-oxoethyl]-1H-pyrrole-2-carboxylic acid (AOPC) at positions 7 or 8, resulting in compounds NT4-NT21. AOPC is an unnatural amino acid with promise in applications as a building block for the synthesis of peptidomimetic compounds. To biologically evaluate these analogues, we determined their plasma stability and their binding affinities to type 1 NT receptor (NTS1), endogenously expressed in HT-29 cells, Among the fourteen NT analogues, compounds, NT5, NT6, and NT8, which have d-Tyr(Et) at position 11, bound to NTS1 in a dose–response manner and with relatively high affinity but still lower than that of the natural peptide. Despite their lower binding affinities compared to NT, the NT5, NT6, and NT8 exhibited a remarkably higher stability, as a result of their chemistry, which provides protection from enzymatic activity. These results will set the basis for the rational design of novel NT molecules with improved pharmacological properties and enhanced enzymatic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abell A (1997) Advances in amino acid mimetics and peptidomimetics, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  • Bailey DM, Johnson RE, Anderson NF (1971) Ethyl pyrrole-2-carboxylate. Org Synth 51:100

    Article  CAS  Google Scholar 

  • Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  • Barelli H, Fox-Threlkeld JE, Dive V, Daniel EE, Vincent JP, Checler F (1994) Role of endopeptidase 3.4.24.16 in the catabolism of neurotensin, in vivo, in the vascularly perfused dog ileum. Br J Pharmacol 112(1):127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlos K, Chatzi O, Gatos D, Stavropoulos G (1991) 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and peptide cleavage. Int J Pept Protein Res 37(6):513–520

    CAS  PubMed  Google Scholar 

  • Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280

    Article  CAS  Google Scholar 

  • Beck B, Burlet A, Nicolas JP, Burlet C (1990) Hyperphagia in obesity is associated with a central peptidergic dysregulation in rats. J Nutr 120(7):806–811

    Article  CAS  PubMed  Google Scholar 

  • Berger O, Edholm O, Jähnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72(5):2002–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn AM, Bloom SR, Edwards AV (1981) Pancreatic endocrine responses to exogenous neurotensin in the conscious calf. J Physiol 314:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bursavich MG, Rich DH (2002a) Designing non-peptide peptidomimetics in the 21st century: inhibitors targeting conformational ensembles. J Med Chem 45(3):541–558

    Article  CAS  PubMed  Google Scholar 

  • Bursavich MG, Rich DH (2002b) Designing non-peptide peptidomimetics in the 21st century: inhibitors targeting conformational ensembles. J Med Chem 45(3):541–558

    Article  CAS  PubMed  Google Scholar 

  • Checler F, Mazella J, Kitabgi P, Vincent JP (1986) High-affinity receptor sites and rapid proteolytic inactivation of neurotensin in primary cultured neurons. J Neurochem 47(6):1742–1748

    Article  CAS  PubMed  Google Scholar 

  • Checler F, Barelli H, Kitabgi P, Vincent J-P (1988) Neurotensin metabolism in various tissues of central and peripheral origins: ubiquitous involvement of a novel neurotensin degrading metalloendopeptidase. Biochimie 70(1):75–82

    Article  CAS  PubMed  Google Scholar 

  • Cordomí A, Edholm O, Perez JJ (2009) Effect of force field parameters on sodium and potassium ion binding to dipalmitoyl phosphatidylcholine bilayers. J Chem Theory Comput 5(8):2125–2134. https://doi.org/10.1021/ct9000763

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Cai F, Belsham DD (2005) Anorexigenic hormones leptin, insulin, and alpha-melanocyte-stimulating hormone directly induce neurotensin (NT) gene expression in novel NT-expressing cell models. J Neurosci 25(41):9497–9506. https://doi.org/10.1523/JNEUROSCI.2269-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Cai F, Belsham DD (2006) Leptin signaling in neurotensin neurons involves STAT, MAP kinases ERK1/2, and p38 through c-Fos and ATF1. FASEB J 20(14):E2268–E2276. https://doi.org/10.1096/fj.06-5989fje

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  • Dolais-Kitabgi J, Kitabgi P, Brazeau P, Freychet P (1979) Effect of neurotensin on insulin, glucagon, and somatostatin release from isolated pancreatic islets. Endocrinology 105(1):256–260. https://doi.org/10.1210/endo-105-1-256

    Article  CAS  PubMed  Google Scholar 

  • Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, Schlinkmann KM, Scott DJ, Schütz M, Plückthun A (2014) Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci USA 111(6):E655–E662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Einsiedel J, Hubner H, Hervet M, Harterich S, Koschatzky S, Gmeiner P (2008) Peptide backbone modifications on the C-terminal hexapeptide of neurotensin. Bioorg Med Chem Lett 18(6):2013–2018. https://doi.org/10.1016/j.bmcl.2008.01.110

    Article  CAS  PubMed  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35(3):161–214

    Article  CAS  PubMed  Google Scholar 

  • Gui X, Carraway RE (2001) Enhancement of jejunal absorption of conjugated bile acid by neurotensin in rats. Gastroenterology 120(1):151–160

    Article  CAS  PubMed  Google Scholar 

  • Harbuck JW, Rapoport H (1972) Facile introduction of ester groups into the pyrrole nucleus via trichloroacetylation and alcoholysis. J Org Chem 37:3618–3622

    Article  CAS  Google Scholar 

  • Henry JA, Horwell DC, Meecham KG, Rees DC (1993) A structure-affinity study of the amino acid side-chains in neurotensin: N and C terminal deletions and Ala-scan. Bioorg Med Chem Lett 3(5):949–952

    Article  CAS  Google Scholar 

  • Hong F, Cusack B, Fauq A, Richelson E (1997) Peptidic and non-peptidic neurotensin analogs. Curr Med Chem 4(6):421–434

    CAS  Google Scholar 

  • Jequier E (2002) Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci 967:379–388

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598

    Article  CAS  PubMed  Google Scholar 

  • Kalafatakis K, Triantafyllou K (2011) Contribution of neurotensin in the immune and neuroendocrine modulation of normal and abnormal enteric function. Regul Pept 170(1–3):7–17. https://doi.org/10.1016/j.regpep.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  • Kanba KS, Kanba S, Nelson A, Okazaki H, Richelson E (1988) [3H] Neurotensin (8–13) binds in human brain to the same sites as does [3H] neurotensin but with higher affinity. J Neurochem 50(1):131–137

    Article  CAS  PubMed  Google Scholar 

  • Karousis N, Koriatopoulou K, Varvounis G (2008) Synthesis of 1-aroylmethylpyrroles as useful intermediates for further chemical transformation. Arkivoc ii:124–133

    Google Scholar 

  • Kholod I, Vallat O, Buciumas A-M, Neier R (2014) Preparation of precursors for the synthesis of analogues of rhazinilam. Arkivoc iii:256–273

    Google Scholar 

  • Kim ER, Mizuno TM (2010) Role of neurotensin receptor 1 in the regulation of food intake by neuromedins and neuromedin-related peptides. Neurosci Lett 468(1):64–67. https://doi.org/10.1016/j.neulet.2009.10.064

    Article  CAS  PubMed  Google Scholar 

  • Kim ER, Leckstrom A, Mizuno TM (2008) Impaired anorectic effect of leptin in neurotensin receptor 1-deficient mice. Behav Brain Res 194(1):66–71. https://doi.org/10.1016/j.bbr.2008.06.024

    Article  CAS  PubMed  Google Scholar 

  • Kitabgi P, Carraway R, Van Rietschoten J, Granier C, Morgat JL, Menez A, Leeman S, Freychet P (1977) Neurotensin: specific binding to synaptic membranes from rat brain. Proc Natl Acad Sci USA 74(5):1846–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knorr R, Trzeciak A, Bannwarth W, Gillessen D (1989) New coupling reagents in peptide chemistry. Tetrahedron Lett 30:1927–1930

    Article  CAS  Google Scholar 

  • Köning W, Geiger R (1970) Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexylcarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen. Chem Ber 103:788–798

    Article  Google Scholar 

  • Krumm BE, White JF, Shah P, Grisshammer R (2015) Structural prerequisites for G-protein activation by the neurotensin receptor. Nat Commun 6:7895

    Article  CAS  PubMed  Google Scholar 

  • Labbé-Jullié C, Barroso S, Nicolas-Etève D, Reversat J-L, Botto J-M, Mazella J, Bernassau J-M, Kitabgi P (1998) Mutagenesis and modeling of the neurotensin receptor NTR1 identification of residues that are critical for binding SR 48692, a nonpeptide neurotensin antagonist. J Biol Chem 273(26):16351–16357

    Article  PubMed  Google Scholar 

  • Laimou DK, Katsara M, Matsoukas M-TI, Apostolopoulos V, Troganis AN, Tselios TV (2010) Structural elucidation of leuprolide and its analogues in solution: insight into their bioactive conformation. Amino Acids 39(5):1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Lampariello LR, Piras D, Rodriquez M, Taddei M (2003) Solid-phase synthesis of conformationally constrained peptidomimetics based on a 3,6-disubstituted-1,4-diazepan-2,5-dione core. J Org Chem 68(20):7893–7895. https://doi.org/10.1021/jo034785d

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinform 78(8):1950–1958. https://doi.org/10.1002/prot.22711

    Article  CAS  Google Scholar 

  • Martin S, Navarro V, Vincent JP, Mazella J (2002) Neurotensin receptor-1 and -3 complex modulates the cellular signaling of neurotensin in the HT29 cell line. Gastroenterology 123(4):1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Matsoukas M-T, Spyroulias GA (2017) Dynamic properties of the growth hormone releasing hormone receptor (GHRHR) and molecular determinants of GHRH binding. Mol BioSyst 13(7):1313–1322

    Article  CAS  PubMed  Google Scholar 

  • Matsoukas M-T, Cordomí A, Ríos S, Pardo L, Tselios T (2013a) Ligand binding determinants for angiotensin II type 1 receptor from computer simulations. J Chem Inf Model 53(11):2874–2883

    Article  CAS  PubMed  Google Scholar 

  • Matsoukas M-T, Potamitis C, Plotas P, Androutsou M-E, Agelis G, Matsoukas J, Zoumpoulakis P (2013b) Insights into AT1 receptor activation through AngII binding studies. J Chem Inf Model 53(11):2798–2811

    Article  CAS  PubMed  Google Scholar 

  • Melchionna M, Styan EK, Marchesan S (2016) The unexpected advantages of using d-amino acids for peptide self-assembly into nanostructured hydrogels for medicine. Curr Top Med Chem 16(18):2009–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • My Shen, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524

    Article  Google Scholar 

  • Remaury A, Vita N, Gendreau S, Jung M, Arnone M, Poncelet M, Culouscou JM, Le Fur G, Soubrie P, Caput D, Shire D, Kopf M, Ferrara P (2002) Targeted inactivation of the neurotensin type 1 receptor reveals its role in body temperature control and feeding behavior but not in analgesia. Brain Res 953(1–2):63–72

    Article  CAS  PubMed  Google Scholar 

  • Sahu A (1998) Evidence suggesting that galanin (GAL), melanin-concentrating hormone (MCH), neurotensin (NT), proopiomelanocortin (POMC) and neuropeptide Y (NPY) are targets of leptin signaling in the hypothalamus. Endocrinology 139(2):795–798. https://doi.org/10.1210/endo.139.2.5909

    Article  CAS  PubMed  Google Scholar 

  • Sahu A (2008) Effects of chronic central leptin infusion on proopiomelanocortin and neurotensin gene expression in the rat hypothalamus. Neurosci Lett 440(2):125–129. https://doi.org/10.1016/j.neulet.2008.05.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu A, Carraway RE, Wang YP (2001) Evidence that neurotensin mediates the central effect of leptin on food intake in rat. Brain Res 888(2):343–347

    Article  CAS  PubMed  Google Scholar 

  • Sarantakis D, Teichman J, Lien EL, Fenichel RL (1976) A novel cyclic undercapeptide, WY-40, 770, with prolonged growth hormone release inhibiting activity. Biochem Biophys Res Commun 73(2):336–342

    Article  CAS  PubMed  Google Scholar 

  • Trott O, Olson A (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent JP, Mazella J, Kitabgi P (1999) Neurotensin and neurotensin receptors. Trends Pharmacol Sci 20(7):302–309

    Article  CAS  PubMed  Google Scholar 

  • Vojkovsky T (1995) Detection of secondary amines on solid phase. Pept Res 8(4):236–237

    CAS  PubMed  Google Scholar 

  • Webb B, Sali A (2014) Protein structure modeling with MODELLER. In: Kihara D (ed) Protein structure prediction, 3rd edn. Springer, New York, pp 1–15

    Google Scholar 

  • White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG (2012) Structure of the agonist-bound neurotensin receptor. Nature 490(7421):508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by UPAT’s “C. Carathéodory” Research Grant (to V. Magafa_2010_D.156) of the University of Patras and by an UoC’s ELKE grant (to G. Liapakis).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vassiliki Magafa or George Liapakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: F. Albericio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magafa, V., Matsoukas, MT., Karageorgos, V. et al. Novel stable analogues of the neurotensin C-terminal hexapeptide containing unnatural amino acids. Amino Acids 51, 1009–1022 (2019). https://doi.org/10.1007/s00726-019-02741-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02741-2

Keywords

Navigation