Skip to main content
Log in

Synthesis of 4-N-α-coumaryl amino acids and investigation of their antioxidant, antimicrobial activities and fluorescence spectra

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

An efficient metal-free approach for the synthesis of N-coumaryl amino acids and the first one-step synthesis of 4-hydrazinocoumarin from 4-hydroxycoumarin was developed. The nucleophilic addition of amino acid methyl esters to 4-tosylcoumarins produced a series of 4-N-α-coumaryl amino acids in good to excellent yields without racemization. The antioxidant activities of the synthesized compounds were investigated using DPPH and FRAP methods. 4-Hydrazinocoumarin and N-coumaryl tyrosine had the best antioxidant activity. The antimicrobial activities of the compounds against Gram-positive was stronger than Gram-negative. 4-Hydrazinocoumarin showed the best antibacterial effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ammar RA, Zayed ME, Sulaiman A (2014) pH-titration, synthesis and antimicrobial activity of Co(II) complexes of Girard T and amino acids. Life Sci J 11:437–443

    Google Scholar 

  • Ana CLL, Kezia PS, Ivone ADS, Janete MDA, Dalci JB (2004) Synthesis, antitumor and antimicrobial activities of new peptidyl derivatives containing the 1,3-benzodioxole system. Eur J Med Chem 39:1059–1065

    Article  CAS  Google Scholar 

  • Atmaca G (2004) Antioxidant effect of sulphur-containing amino acids. Yonsei Med J 45:776–788

    Article  PubMed  CAS  Google Scholar 

  • Behrami A, Krasniqi I (2012) Antibacterial activity of coumarine derivatives synthesized from 8-amino-4,7- dihydroxy-chromen-2-one and comparison with standard drug. J Chem Pharm Res 4:2495–2500

    CAS  Google Scholar 

  • Brenner M, Huber W (1953) Preparation of a-amino acid esters by alcoholysis of the methyl esters. Helv Chim Acta 36:1109–1115

    Article  CAS  Google Scholar 

  • Bubols BG, Damiana RD, Medina-Remon A (2013) The antioxidant activity of coumarins and flavonoids. Mini Rev Med Chem 13:318–334

    PubMed  CAS  Google Scholar 

  • Chao-jun H, Hao Z, Kan Z, Ming X, Jian-rong G, Yu-jin L (2016) A novel turn off fluorescent sensor for Fe(III) and pH environment based on coumarin derivatives: the fluorescence characteristics and theoretical study. Tetrahedron 72:8365–8372

    Article  CAS  Google Scholar 

  • Chavan AP (2006) Microwave assisted synthesis of 4-aryl/alkylaminocoumarins. J Chem Res 2006:179–181

    Article  Google Scholar 

  • Chen M, Tang B, Zhang X, Shu H (2016) Synthesis and antibacterial activity evaluation of novel (E)-4-(4-((arylidene) amino) phenoxy) coumarin derivatives. J. Heterocycl Chem 54:1186–1192

    Article  CAS  Google Scholar 

  • Devulapally S, Chandraiah G, Kumar P (2018) A review on pharmacological properties of coumarins. Mini Rev Med Chem 18:113–141

    Google Scholar 

  • Filippenko TA, Gribova NY (2011) Antioxidant activity of amino acids during oxidation of sunflower oil in an emulsion. Pharm Chem J 45:40–42

    Article  CAS  Google Scholar 

  • Garazd MM, Garazd YL, Shilin SV, Khilya VP (2002) Amino-acid derivatives of 3-hydroxy-7,8,9,10-tetrahydrobenzo[c]chromen-6-one. Chem Nat Comp 38:416–423

    Article  CAS  Google Scholar 

  • Gómez-Verjan KD, Rodríguez-Hernández R (2017) Bioactive coumarins and xanthones from calophyllum genus and analysis of their druglikeness and toxicological properties. In: Go´ mez-Verjan JC, Rodrı´guez-Herna´ndez KD, Reyes-Chilpa R (eds) Studies in natural products chemistry, 53rd edn. Elsevier, Amsterdam, pp 277–307

    Google Scholar 

  • Hansen A, Troels S (2005) Regioselective Heck couplings of α, β-unsaturated tosylates and mesylates with electron-rich olefins. Org Lett 7:5585–5587

    Article  PubMed  CAS  Google Scholar 

  • Haralambos EK (2004) The coumarin moiety as chromophore of fluorescent ion indicators in biological systems. Curr Pharm Des 10:3835–3852

    Article  Google Scholar 

  • Hughes AB (2011) Amino acids, peptides and proteins in organic chemistry, vol 4. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Imramovsky´ A, Vinšová J, Férriz JM, Buchta V, Jampílek J (2009) Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorg Med Chem Lett 19:348–351

    Article  PubMed  CAS  Google Scholar 

  • Irwansyah I, Li YQ, Shi W, Qi D, Leow WR, Tang MBY, Li S, Chen X (2015) Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv Mater 27:648–654

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen JT, Washington DC, Murray PR, Baron EJ, Jørgensen JH, Pfaller MA, Yolken FC, Yolken RH (2007) Manual of clinical microbiology. Am Soc Microbiol 9:1152–1172

    Google Scholar 

  • Kaur P, Gill RK, Singh G, Bariwal J (2016) Synthesis, cytotoxic evaluation, and in silico studies of 4-substituted coumarins. J. Heterocycl Chem 53:1519–1527

    Article  CAS  Google Scholar 

  • Kharb R, Kaur M, Sharma AK (2013) Imperative advances on antimicrobial activity of coumarin derivatives. Int J Pharm Sci Rev Res 20:87–94

    CAS  Google Scholar 

  • Kumari S, Abdul Shakoor SM, Bajaj K, Nanjegowda SH, Mallu P, Sakhuja R (2016) Copper-catalyzed C-N/C-O coupling in water: a facile access to N-coumaryl amino acids and fluorescent tyrosine and lysine labels. Tetrahedron Lett 57:2732–2736

    Article  CAS  Google Scholar 

  • Matos MJ, Vazquez-Rodriguez S, Fonseca A, Uriarte E, Santana L, Borges F (2017) Heterocyclic antioxidants in nature: coumarins. Curr Org Chem 21:311–324

    Article  CAS  Google Scholar 

  • Matsui R, Honda R, Kanome M, Hagiwara A, Matsuda Y, Togitani T, Ikemoto N, Terashima M (2018) Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem 245:750–755

    Article  PubMed  CAS  Google Scholar 

  • Medina FG, Marrero JG, Macias-Alonso M, Gonzalez MC, Cordova-Guerrero I, Teissier G, Ariana G, Osegueda-Robles S (2015) Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat Prod Rep 32:1472–1507

    Article  PubMed  CAS  Google Scholar 

  • Meisel H (2007) Food-derived bioactive proteins and peptides as potential components of nutraceuticals. Curr Food Sci Nutr 13:873–874

    CAS  Google Scholar 

  • Meucci E, Mele MC (2007) Amino acids and plasma antioxidant capacity short communication. Amino Acids 12:373–377

    Article  Google Scholar 

  • Nimalaratne C, Lopes-Lutz D, Schieber A, Wu J (2011) Free aromatic amino acids in egg yolk show antioxidant properties. Food Chem 129:155–161

    Article  CAS  Google Scholar 

  • Ohashi Y, Onuma R, Nagakuma T, Ogawa T, Naude R, Nokihara K, Muramoto K (2015) Antioxidant properties tripeptides revealed by a comparison of six different assays. Food Sci Technol Res 21:695–704

    Article  CAS  Google Scholar 

  • Pinazo A, Manresa MA, Marques AM, Bustelo M, Espuny MJ, Pérez L (2016) Amino acid–based surfactants: new antimicrobial agents. Adv Colloid Interface Sci 228:17–39

    Article  PubMed  CAS  Google Scholar 

  • Prakasha KC, Raghavendra GM, Harisha R (2011) Design, synthesis and antimicrobial screening of amino acids conjugated 2-amino-4-arylthiazole derivatives Int. J Pharm Pharm Sci 3:120–125

    CAS  Google Scholar 

  • Premlata, Verma S, Seth G (2012) Synthesis, characterization and antimicrobial activity of Ni(II) complexes with 2-substituted benzothiazole ligands & amino acids. Res J Pharm Biol Chem Sci 3:435–443

    CAS  Google Scholar 

  • Saito K, Jin DH, OgawaT Muramoto K, Hatakeyama E, Yasuhara T, Nokihara K (2003) Antioxidant properties of tripeptide libraries prepared by the combinatorial chemistry. J Agric Food Chem 51:3668–3674

    Article  PubMed  CAS  Google Scholar 

  • Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205

    Article  CAS  Google Scholar 

  • Shivakumara KN, Prakasha KC, Gowda DC (2009) Synthesis and antimicrobial activity of amino acids conjugated diphenylmethylpiperazine derivatives. J Chem 6:473–479

    Google Scholar 

  • Suryanarayana V, Sandeep S, Menakshi J, Savitha S, Prati Pal S, Chaman Lal K, Rahul Jain (2004) Bioorg Med Chem 12:239–247

  • Taylor MJ, Richardson T, Jasensky RD (1981) Antioxidant activity of amino acids bound to trolox-C. Food Sci 58:622–626

    CAS  Google Scholar 

  • Triantis TM, Yannakopoulou E, Nikokavoura A, Dimotikali D, Papadopoulos K (2007) Chemiluminescent studies on the antioxidant activity of amino acids. Anal Chim Acta 591:106–111

    Article  PubMed  CAS  Google Scholar 

  • Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Bio Med Res Int 2006:1–14

    Google Scholar 

  • Veselovskaya MV, Shilin SV, Garazd MM, Khilya VP (2003) synthesis of amino-acid derivatives of 3-(2,3,5-trimethyl-7-oxofuro-[3,2-g] chromen-6-yl)propanoic acid. Chem Nat Comp 39:177–181

    Article  CAS  Google Scholar 

  • Veselovskaya MV, Ogorodniichuk AS, Garazd MM, Garazd L, Khilya VP (2005) Synthesis of angular dihydropyranocoumarins containing amino acids and peptides. Chem Nat Comp 41:516–522

    Article  CAS  Google Scholar 

  • Veselovskaya MV, Garazd YL, Garazd MM (2009) Synthesis of amino-acid derivatives of dihydropyranocoumarins. Chem Nat Comp 45:169–173

    Article  CAS  Google Scholar 

  • Wada N, Sakamoto T, Matsugo S (2015) Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 4:603–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner DB (2009) The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems. Molecules 14:210–237

    Article  PubMed  CAS  Google Scholar 

  • Wei QY, Jiang H, Zhang JX, Zhang C, Guo PF (2012) Antimicrobial activities of the cinnamoyl amide of amino acid derivatives. Asian J Chem 24:2383–2388

    CAS  Google Scholar 

  • Won HS, Kim JH, Mishig-Ochair T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286

    Article  PubMed  CAS  Google Scholar 

  • Xu N, Guanqun C, Liu H (2017) Antioxidative categorization of twenty amino acids based on experimental evaluation. Molecules 22:2066–2074

    Article  CAS  Google Scholar 

  • Wong C, Li H, Cheng K, Chen F (2006) A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. J Food Chem 97:705–711

    Article  CAS  Google Scholar 

  • Zhu H, Wu X, Yin Y, Sha S (2015) Preparation of coumarin-pyrazole fused compounds as anti-tumor agents. Faming Zhuanli Shenqing. CODEN: CNXXEV; CN105061441

Download references

Acknowledgements

This research was supported by National Institute for Medical Research Development (Grant No. 943185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Balalaie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: N. Sewald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalehshahi, H.G., Balalaie, S., Aliahmadi, A. et al. Synthesis of 4-N-α-coumaryl amino acids and investigation of their antioxidant, antimicrobial activities and fluorescence spectra. Amino Acids 50, 1461–1470 (2018). https://doi.org/10.1007/s00726-018-2624-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2624-5

Keywords

Navigation