Skip to main content
Log in

Identification and characterization of novel broad-spectrum amino acid racemases from Escherichia coli and Bacillus subtilis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The peptidoglycan layer of the bacterial cell wall typically contains d-alanine (d-Ala) and d-glutamic acid (d-Glu), and also various non-canonical d-amino acids that have been linked to peptidoglycan remodeling, inhibition of biofilm formation, and triggering of biofilm disassembly. Bacteria produce d-amino acids when adapting to environmental changes as a common survival strategy. In our previous study, we detected non-canonical d-amino acids in Escherichia coli grown in minimal medium. However, the biosynthetic pathways of non-canonical d-amino acids remain poorly understood. In the present study, we identified amino acid racemases in E. coli MG1655 (YgeA) and Bacillus subtilis (RacX) that produce non-canonical d-amino acids other than d-Ala and d-Glu. We characterized their enzymatic properties, and both displayed broad substrate specificity but low catalytic activity. YgeA preferentially catalyzes the racemization of homoserine, while RacX preferentially racemizes arginine, lysine, and ornithine. RacX is dimeric, and appears not to require pyridoxal 5′-phosphate (PLP) as a coenzyme as is the case with YgeA. To our knowledge, this is the first report on PLP-independent amino acid racemases possessing broad substrate specificity in E. coli and B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PLP:

Pyridoxal 5′-phosphate

BN-PAGE:

Blue native polyacrylamide gel electrophoresis

OPA:

o-Phthalaldehyde

NAC:

N-Acetyl-l-cysteine

Boc-l-Cys:

N-tert-Butoxycarbonyl-l-cysteine

References

  • Ahn JW, Chang JH, Kim KJ (2015) Structural basis for an atypical active site of an l-aspartate/glutamate-specific racemase from Escherichia coli. FEBS Lett 589:3842–3847

    Article  CAS  PubMed  Google Scholar 

  • Arias CA, Weisner J, Blackburn JM, Reynolds PE (2000) Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174. Microbiology 146:1727–1734

    Article  CAS  PubMed  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Ashiuchi M, Tani K, Soda K, Misono H (1998) Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-γ-glutamate. J Biochem 123:1156–1163

    Article  CAS  PubMed  Google Scholar 

  • Bellais S, Arthur M, Dubost L, Hugonnet JE, Gutmann L, van Heijenoort J, Legrand R, Brouard JP, Rice L, Mainardi JL (2006) Aslfm, the d-aspartate ligase responsible for the addition of d-aspartic acid onto the peptidoglycan precursor of Enterococcus faecium. J Biol Chem 281:11586–11594

    Article  CAS  PubMed  Google Scholar 

  • Boniface A, Parquet C, Arthur M, Mengin-Lecreulx D, Blanot D (2009) The elucidation of the structure of Thermotoga maritima peptidoglycan reveals two novel types of cross-link. J Biol Chem 284:21856–21862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cava F, Lam H, de Pedro MA, Waldor MK (2011a) Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell Mol Life Sci 68:817–831

    Article  CAS  PubMed  Google Scholar 

  • Cava F, de Pedro MA, Lam H, Davis BM, Waldor MK (2011b) Distinct pathways for modification of the bacterial cell wall by non-canonical d-amino acids. EMBO J 30:3442–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen IC, Lin WD, Hsu SK, Thiruvengadam V, Hsu WH (2009) Isolation and characterization of a novel lysine racemase from a soil metagenomic library. Appl Environ Microbiol 75:5161–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly JP, Goldstone RJ, Burgess K, Cogdell RJ, Beatson SA, Vollmer W, Smith DG, Roe AJ (2015) The host metabolite d-serine contributes to bacterial niche specificity through gene selection. ISME J 9:1039–1051

    Article  CAS  PubMed  Google Scholar 

  • Connolly JP, Gabrielsen M, Goldstone RJ, Grinter R, Wang D, Cogdell RJ, Walker D, Smith DG, Roe AJ (2016) A highly conserved bacterial d-serine uptake system links host metabolism and virulence. PLoS Pathog 12:e1005359

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Fiore MM, Santillo A, Chieffi Baccari G (2014) Current knowledge of d-aspartate in glandular tissues. Amino Acids 46:1805–1818

    Article  PubMed  Google Scholar 

  • Espaillat A, Carrasco-López C, Bernardo-García N, Pietrosemoli N, Otero LH, Álvarez L, de Pedro MA, Pazos F, Davis BM, Waldor MK, Hermoso JA, Cava F (2014) Structural basis for the broad specificity of a new family of amino-acid racemases. Acta Crystallogr D Biol Crystallogr 70:79–90

    Article  CAS  PubMed  Google Scholar 

  • Fujii N, Kaji Y, Fujii N, Nakamura T, Motoie R, Mori Y, Kinouchi T (2010) Collapse of homochirality of amino acids in proteins from various tissues during aging. Chem Biodivers 7:1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Goytia M, Chamond N, Cosson A, Coatnoan N, Hermant D, Berneman A, Minoprio P (2007) Molecular and structural discrimination of proline racemase and hydroxyproline-2-epimerase from nosocomial and bacterial pathogens. PLoS ONE 2:e885

    Article  PubMed  PubMed Central  Google Scholar 

  • Grohs P, Gutmann L, Legrand R, Schoot B, Mainardi JL (2000) Vancomycin resistance is associated with serine-containing peptidoglycan in Enterococcus gallinarum. J Bacteriol 182:6228–6232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández SB, Cava F (2015) Environmental roles of microbial amino acid racemases. Environ Microbiol 18:1673–1685

    Article  PubMed  Google Scholar 

  • Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R (2011) Inhibitory effects of d-amino acids on Staphylococcus aureus biofilm development. J Bacteriol 193:5616–5622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katane M, Homma H (2011) d-Aspartate—an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B Analyt Technol Biomed Life Sci 879:3108–3121

    Article  CAS  PubMed  Google Scholar 

  • Katane M, Saitoh Y, Uchiyama K, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Uda K, Homma H (2016) Characterization of a homologue of mammalian serine racemase from Caenorhabditis elegans: the enzyme is not critical for the metabolism of serine in vivo. Genes Cells 21:966–977

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Hemmi H, Yoshimura T (2012) Lysine racemase from a lactic acid bacterium, Oenococcus oeni: structural basis of substrate specificity. J Biochem 152:505–508

    Article  CAS  PubMed  Google Scholar 

  • Kepert I, Fonseca J, Müller C, Milger K, Hochwind K, Kostric M, Fedoseeva M, Ohnmacht C, Dehmel S, Nathan P, Bartel S, Eickelberg O, Schloter M, Hartmann A, Schmitt-Kopplin P, Krauss-Etschmann S (2016) d-Tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol 139:1525–1535

    Article  PubMed  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) d-Amino acids trigger biofilm disassembly. Science 328:627–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuan YC, Kao CH, Chen CH, Chen CC, Hu HY, Hsu WH (2011) Biochemical characterization of a novel lysine racemase from Proteus mirabilis BCRC10725. Process Biochem 46:1914–1920

    Article  CAS  Google Scholar 

  • Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK (2009) d-Amino acids govern stationary phase cell wall remodeling in bacteria. Science 325:1552–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiman SA, May JM, Lebar MD, Kahne D, Kolter R, Losick R (2013) d-Amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J Bacteriol 195:5391–5395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li E, Wang P, Zhang D (2016) d-Phenylalanine inhibits biofilm development of a marine microbe, Pseudoalteromonas sp. SC2014. FEMS Microbiol Lett 363:fnw198

    Article  PubMed  Google Scholar 

  • Liu X, Gao F, Ma Y, Liu S, Cui Y, Yuan Z, Kang X (2016) Crystal structure and molecular mechanism of an aspartate/glutamate racemase from Escherichia coli O157. FEBS Lett 590:1262–1269

    Article  CAS  PubMed  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Matsui D, Oikawa T, Arakawa N, Osumi S, Lausberg F, Stäbler N, Freudl R, Eggeling L (2009) A periplasmic, pyridoxal-5′-phosphate-dependent amino acid racemase in Pseudomonas taetrolens. Appl Microbiol Biotechnol 83:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto T, Sekine M, Ogawa T, Hidaka M, Homma H, Masaki H (2010) Detection of d-amino acids in purified proteins synthesized in Escherichia coli. Amino Acids 38:1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto T, Takahashi N, Sekine M, Ogawa T, Hidaka M, Homma H, Masaki H (2015) Transition of serine residues to the d-form during the conversion of ovalbumin into heat stable S-ovalbumin. J Pharm Biomed Anal 116:145–149

    Article  CAS  PubMed  Google Scholar 

  • Mutaguchi Y, Ohmori T, Wakamatsu T, Doi K, Ohshima T (2013) Identification, purification, and characterization of a novel amino acid racemase, isoleucine 2-epimerase, from Lactobacillus species. J Bacteriol 195:5207–5215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa T (2011) Analysis of free d-serine in mammals and its biological relevance. J Chromatogr B Analyt Technol Biomed Life Sci 879:3169–3183

    Article  CAS  PubMed  Google Scholar 

  • O’Connor KA, Zusman DR (1997) Starvation-independent sporulation in Myxococcus xanthus involves the pathway for β-lactamase induction and provides a mechanism for competitive cell survival. Mol Microbiol 24:839–850

    Article  PubMed  Google Scholar 

  • Ollivaux C, Soyez D, Toullec JY (2014) Biogenesis of d-amino acid containing peptides/proteins: where, when and how? J Pept Sci 20:595–612

    Article  CAS  PubMed  Google Scholar 

  • Radkov AD, Moe LA (2013) Amino acid racemization in Pseudomonas putida KT2440. J Bacteriol 195:5016–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radkov AD, Moe LA (2014) Bacterial synthesis of d-amino acids. Appl Microbiol Biotechnol 98:5363–5374

    Article  CAS  PubMed  Google Scholar 

  • Ramón-Peréz ML, Diaz-Cedillo F, Ibarra JA, Torales-Cardeña A, Rodríguez-Martínez S, Jan-Roblero J, Cancino-Diaz ME, Cancino-Diaz JC (2014) d-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections. J Med Microbiol 63:1369–1376

    Article  PubMed  Google Scholar 

  • Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL (2005) Multiple and interconnected pathways for l-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 187:7500–7510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revelles O, Wittich RM, Ramos JL (2007) Identification of the initial steps in d-lysine catabolism in Pseudomonas putida. J Bacteriol 189:2787–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez Z, Tani A, Kimbara K (2013) Extensive reduction of cell viability and enhanced matrix production in Pseudomonas aeruginosa PAO1 flow biofilms treated with a d-amino acid mixture. Appl Environ Microbiol 79:1396–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasabe J, Miyoshi Y, Rakoff-Nahoum S, Zhang T, Mita M, Davis BM, Hamase K, Waldor MK (2016) Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nat Microbiol 1:16125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • She P, Chen L, Liu H, Zou Y, Luo Z, Koronfel A, Wu Y (2015) The effects of d-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa. Microb Pathog 86:38–44

    Article  CAS  PubMed  Google Scholar 

  • Soutourina J, Plateau P, Blanquet S (2000) Metabolism of d-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells. J Biol Chem 275:32535–32542

    Article  CAS  PubMed  Google Scholar 

  • Stadtman TC, Elliott P (1957) Studies on the enzymic reduction of amino acids. II. Purification and properties of d-proline reductase and a proline racemase from Clostridium sticklandii. J Biol Chem 228:983–997

    CAS  PubMed  Google Scholar 

  • Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22:326–333

    Article  PubMed  Google Scholar 

  • Vollmer W, Blanot D, de Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167

    Article  CAS  PubMed  Google Scholar 

  • Washio T, Kato S, Oikawa T (2016) Molecular cloning and enzymological characterization of pyridoxal 5′-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473. Extremophiles 20:711–721

    Article  CAS  PubMed  Google Scholar 

  • Wittig I, Braun HP, Schägger H (2006) Blue native PAGE. Nat Protoc 1:418–428

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H (2007) NMDA receptor regulation by d-serine: new findings and perspectives. Mol Neurobiol 36:152–164

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Ashiuchi M, Ohnishi K, Kato S, Nagata S, Misono H (2004) Molecular identification of monomeric aspartate racemase from Bifidobacterium bifidum. Eur J Biochem 271:4798–4803

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Choi SY, Okada H, Yohda M, Kumagai H, Esaki N, Soda K (1992) Properties of aspartate racemase, a pyridoxal 5′-phosphate-independent amino acid racemase. J Biol Chem 267:18361–18364

    CAS  PubMed  Google Scholar 

  • Yang H, Wang M, Yu J, Wei H (2015) Aspartate inhibits Staphylococcus aureus biofilm formation. FEMS Microbiol Lett 362:fnv025

    PubMed  Google Scholar 

  • Yorifuji T, Ogata K (1971) Arginine racemase of Pseudomonas graveolens. I. Purification, crystallization, and properties. J Biol Chem 246:5085–5092

    CAS  PubMed  Google Scholar 

  • Yoshida T, Seko T, Okada O, Iwata K, Liu L, Miki K, Yohda M (2006) Roles of conserved basic amino acid residues and activation mechanism of the hyperthermophilic aspartate racemase at high temperature. Proteins 64:502–512

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Li X, Zhang N, Wen D, Liu C, Li Q (2016) Inhibition of biofilm formation by d-tyrosine: effect of bacterial type and d-tyrosine concentration. Water Res 92:173–179

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Homma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: S. Stuchlík.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 42 kb)

Supplementary material 2 (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, T., Katane, M., Saitoh, Y. et al. Identification and characterization of novel broad-spectrum amino acid racemases from Escherichia coli and Bacillus subtilis . Amino Acids 49, 1885–1894 (2017). https://doi.org/10.1007/s00726-017-2486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2486-2

Keywords

Navigation