Skip to main content

Advertisement

Log in

Citrulline metabolism in plants

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Citrulline was chemically isolated more than 100 years ago and is ubiquitous in animals, plants, bacteria, and fungi. Most of the research on plant citrulline metabolism and transport has been carried out in Arabidopsis thaliana and the Cucurbitaceae family, particularly in watermelon which accumulates this non-proteinogenic amino acid to very high levels. Industrially, citrulline is produced via specially optimized microbial strains; however, the amounts present in watermelon render it an economically viable source providing that other high-value compounds can be co-extracted. In this review, we provide an overview of our current understanding of citrulline biosynthesis, transport, and catabolism in plants additionally pointing out significant gaps in our knowledge which need to be closed by future experimentation. This includes the identification of further potential enzymes of citrulline metabolism as well as obtaining a far better spatial resolution of both sub-cellular and long-distance partitioning of citrulline. We further discuss what is known concerning the biological function of citrulline in plants paying particular attention to the proposed roles in scavenging of excess NH4 + and as a compatible solute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acaster MA, Scott-White S, Weitzman PDJ (1989) Carbamoyltransferase reactions in plants. A survey of enzymatic diversity and the potential for herbicidal activity of transition-state analog inhibitors. J Exp Bot 40:1121–1125

    Article  CAS  Google Scholar 

  • Akashi K, Miyake C, Yokota A (2001) Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett 508:438–442

    Article  CAS  PubMed  Google Scholar 

  • Akashi K, Mifune Y, Morita K, Ishitsuka S, Tsujimoto H, Ishihara T (2017) Spatial accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits. J Sci Food Agric 97:479–487

    Article  CAS  PubMed  Google Scholar 

  • Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, Park J, Bovet L, Lee Y, Geldner N, Fernie AR, Martinoia E (2012) AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol 22(13):1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Allen AE, Dupont CL, Oborník M, Horák A, Nunes-Nesi A, McCrow JP, Zheng H, Johnson DA, Hu H, Fernie AR, Bowler C (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473:203–207

    Article  CAS  PubMed  Google Scholar 

  • Alsop P, Hauton D (2016) Oral nitrate and citrulline decrease blood pressure and increase vascular conductance in young adults: a potential therapy for heart failure. Eur J Appl Physiol 116:1651–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahri S, Zerrouk N, Aussel C, Moinard C, Crenn P, Curis E, Chaumeil JC, Cynober L, Sfar S (2013) Citrulline: from metabolism to therapeutic use. Nutrition 29(3):479–484

    Article  CAS  PubMed  Google Scholar 

  • Bai C, Reilly CC, Wood BW (2006) Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol 140:433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai C, Reilly CC, Wood BW (2007) Identification and quantitation of asparagine and citrulline using high-performance liquid chromatography (HPLC). Anal Chem Insights 2:31–36

    PubMed  PubMed Central  Google Scholar 

  • Baker A, Hill GH, Parsons R (1997) Evidence for N feedback regulation of N2 fixation in Alnus glutinosa L. J Exp Bot 48(1):67–73

    Article  CAS  Google Scholar 

  • Bellocco E, Di Salvo C, Laganà G, Galtieri A, Ficarra S, Kotyk A, Leuzzi U (2002) Ornithine carbamoyltransferase from Spinacea oleracea: purification and characterization. Biologia Plantatrum 45:533–538

    Article  CAS  Google Scholar 

  • Bernhardt K, Wilkinson S, Weber AP, Linka N (2012) A peroxisomal carrier delivers NAD+ and contributes to optimal fatty acid degradation during storage oil mobilization. Plant J 69(1):1

    Article  CAS  PubMed  Google Scholar 

  • Besson-Bard A, Astier J, Rasul S, Wawer I, Dubreuil-Maurizi C, Jeandroz S, Wendehenne D (2009) Current view of nitric oxide-responsive genes in plants. Plant Sci 177:302–309

    Article  CAS  Google Scholar 

  • Bloom AJ, Smart DR, Nguyen DT, Searles PS (2002) Nitrogen assimilation and growth of wheat under elevated carbon dioxide. PNAS 99:1730–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borah P, Sharma E, Kaur A, Chandel G, Mohapatra T, Kapoor S, Khurana JP (2017) Analysis of drought-responsive signaling network in two contrasting rice cultivars using transcriptome-based approach. Sci Rep 7:42131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brauc S, de Vooght E, Claeys M, Geuns JMC, Höfte M, Angenon G (2012) Overexpression of arginase in Arabidopsis thaliana influences defense responses against Botrytis cinerea. Plant Biol 14(1):39–45

    Article  CAS  PubMed  Google Scholar 

  • Breuillard C, Cynober L, Moinard C (2015) Citrulline and nitrogen homeostasis: an overview. Amino Acids 47(4):685–691

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Lutz A, Hill CB, Callahan DL, Roessner U (2016) A quantitative profiling method of phytohormones and other metabolites applied to barley roots subjected to salinity stress. Front Plant Sci 7:2070

    PubMed  Google Scholar 

  • Catoni E, Desimone M, Hilpert M, Wipf D, Kunze R, Schneider A, Flugge U, Schumacher K, Frommer W (2003) Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis. BMC Plant Biol 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen NS, Kuda A (1996) Argininosuccinate synthetase and argininosuccinate lyase are localized around mitochondria: an immunocytochemical study. J Cell Biochem 60:334–340

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, Leon AM, Sandalio LM, del Rio LA (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Hayashi M, Mano S, Nishimura M, Barroso JB (2009) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151:2083–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa JL, Lindblad P (2002) Cyanobacteria in symbiosis with cycads. In: Ray AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, pp 195–205

    Google Scholar 

  • Crenn P, Cynober L (2010) Effect of intestinal resections on arginine metabolism: practical implications for nutrition support. Curr Opin Clin Nutr Metab Care 13:65–69

    Article  CAS  PubMed  Google Scholar 

  • Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Benazeth S, Cynober L (2005) Almost all about citrulline in mammals. Amino Acids 29:177–205

    Article  CAS  PubMed  Google Scholar 

  • Davis AR, Fish W, Levi A, King S, Wehner T, Perkins-Veazie P (2010) l-Citrulline levels in watermelon cultivars from three locations. Cucurbit Genet Coop Rep 33:36–39

    Google Scholar 

  • Davis AR, Webber CL III, Fish WW, Wehner TC, King S, Perkins-Veazie P (2011) l-Citrulline levels in watermelon cultigens tested in two environments. HortScience 46(12):1572–1575

    CAS  Google Scholar 

  • Davis AR, Webber C, Liu W, Perkins-Veazie P, Levi A, King S (2013) Watermelon quality traits as affected by ploidy. HortScience 48:1113–1118

    Google Scholar 

  • deRuiter H, Kollöffel C (1985) Properties of ornithine carbamoyltransferase from Pisum sativum L. Plant Physiol 77:695–699

    Article  CAS  Google Scholar 

  • Domingos P, Prado AM, Wong A, Gehring C, Feijo JA (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8:506–520

    Article  CAS  PubMed  Google Scholar 

  • Doremus HD, Jagendorf AT (1987) Site of synthesis of the enzymes of the pyrimidine biosynthetic pathway in oat (Avena sativa L.) leaves. Plant Physiol 83:657–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan O, van der Merwe MJ, Daley DO, Whelan J (2013) The outer mitochondrial membrane in higher plants. J Trends Plant Sci 18(4):207–217

    Article  CAS  Google Scholar 

  • Eberhardt D, Jensen JVK, Wendisch VF (2014) l-Citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express 4:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edens L, Paulus Deutz NE, Theodorus Dekker PJ (2008) Peptidylarginine deiminase and uses thereof in the production of citrullinated proteins and peptides. The United States Patent Application PCT/EP2007/056310, 2008 Jan 3

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Farré EM, Tiessen A, Roessner U, Geigenberger P, Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiol 127(2):685–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrario-Mery S, Besin E, Pichon O, Meyer C, Hodges M (2006) The regulatory PII protein controls arginine biosynthesis in Arabidopsis. FEBS Lett 580:2015–2020

    Article  CAS  PubMed  Google Scholar 

  • Fischer WN, Kwart M, Hummel S, Frommer WB (1995) Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 270:16315–16320

    Article  CAS  PubMed  Google Scholar 

  • Fischer WN, Loo DD, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high-affinity amino acid H+ -cotransporters for cellular import of neutral and charged amino acids. Plant J 29:717–731

    Article  CAS  PubMed  Google Scholar 

  • Fish WW (2012) Process for the production of l-citrulline from watermelon flesh and rind. The United States Patent Application US 12/630,294, 2012 May 8

  • Fish WW (2014) The expression of citrulline and other members of the arginine metabolic family in developing watermelon fruit. Int J Agric Innov Res 2(5):665–672

    Google Scholar 

  • Fish WW, Bruton BD, Russo VM (2009) Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotechnol Biofuels 2:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC (2008) Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiol 147:1936–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fragkos K, Forbess A (2011) Was citrulline first a laxative substance? The truth about modern citrulline and its isolation. Nihon ishigaku zasshi/J Jpn Hist Med 57(3):275–292

    Google Scholar 

  • Frémont N, Riefler M, Stolz A, Schmülling T (2013) The Arabidopsis TUMORPRONE5 gene encodes an acetylornithine aminotransferase required for arginine biosynthesis and root meristem maintenance in blue light. Plant Physiol 161:1127–1140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardner IC, Leaf G (1960) Translocation of citrulline in Alnus glutinosa. Plant Physiol 35:948–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn E, Maretzki A (1977) Properties and subcellular distribution of two partially purified ornithine transcarbamoylases in cell suspensions of sugarcane. Plant Physiol 60:122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X, Khurram Z, Zhang Y, Wang T, Fei Z, Ye Z (2010) Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot 61(13):3563–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groß F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Gudmann NS, Hansen NU, Jensen AC, Karsdal MA, Siebuhr AS (2015) Biological relevance of citrullinations: diagnostic, prognostic and therapeutic options. Autoimmunity 48(2):73–79

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Sun H, Zhang H, Liu J, Ren Y, Gong G et al (2015) Comparative transcriptome analysis of cultivated and wild watermelon during fruit development. PLoS One 10(6):e0130267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST, Cristescu SM, Harren FJ, Bauwe H, Fernie AR, Kaiser WM, Mur LA (2013) The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. J Exp Bot 64(2):553–568

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Holloway BW, Schambock A, Leisinger T (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22

    Article  CAS  PubMed  Google Scholar 

  • Häberle J, Pauli S, Linnebank M, Kleijer WJ, Bakker HD, Wanders RJ, Harms E, Koch HG (2002) Structure of the human argininosuccinate synthetase gene and an improved system for molecular diagnostics in patients with classical and mild citrullinemia. Hum Genet 110:327–333

    Article  PubMed  CAS  Google Scholar 

  • Hao N, Mu J, Hu N, Xu S, Yan M, Li Y, Guo K, Xu L (2015) Improvement of l-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase. J Ind Microbiol Biotechnol 42:307

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) Nucleic Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoyos ME, Palmieri L, Wertin T, Arrigoni R, Polacco JC, Palmieri F (2003) Identification of a mitochondrial transporter for basic amino acids in Arabidopsis thaliana by functional reconstitution into liposomes and complementation in yeast. Plant J 33:1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Igarashi D, Tsuchida H, Miyao M, Ohsumi C (2006) Glutamate: glyoxylate aminotransferase modulates amino acid content during photorespiration. Plant Physiol 1428(1):901–910

    Article  CAS  Google Scholar 

  • Inatomi H, Sasaki T, Suyama Y, Inukai F, Daigaku M, Hokoku NK (1969) Studies on nonprotein amino acids in plants. IX. Distribution of citrullie in water melon fruit. Bulletin of the Faculty of Agriculture Meiji University [Meiji Daigaku Nogakubu Kenkyu Hokoku] (24):23–29

  • Jayaprakasha GK, Patil BS (2016) A metabolomics approach to identify and quantify the phytochemicals in watermelons by quantitative (1)HNMR. Talanta 153:268–277

    Article  CAS  PubMed  Google Scholar 

  • Jayaprakasha GK, Chidambara Murthy KN, Patil BS (2011) Rapid HPLC-UV method for quantification of l-citrulline in watermelon and its potential role on smooth muscle relaxation markers. Food Chem 127:240–248

    Article  CAS  Google Scholar 

  • Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GK, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci Signal 9(417):re2. doi:10.1126/scisignal.aad4403 (Review. PubMed PMID: 26933064)

    Article  PubMed  CAS  Google Scholar 

  • Jones AB, Dennison WC, Stewart GR (1996) Macroalgal responses to nitrogen source and availability: amino acid metabolic profiling as a bioindicator using Gracilaria edulis (Rhodophyta). J Phycol 32:757–766

    Article  CAS  Google Scholar 

  • Kalamaki MS, Alexandrou D, Lazari D, Merkouropoulos G, Fotopoulos V, Pateraki I, Aggelis A, Carrillo-López A, Rubio-Cabetas MJ, Kanellis AK (2009) Over-expression of a tomato N-acetyl-l-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J Exp Bot 60:1859–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasting R, Delwiche CC (1958) Ornithine, citrulline, and arginine metabolism in watermelon seedlings. Plant Physiol 33:350–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kating H, Eschrich W (1964) Uptake, incorporation and transport of 14C in Cucurbita ficifolia II. Application of bicarbonate 14C to the roots. Planta 60:598–611

    Article  CAS  Google Scholar 

  • Kawasaki S, Miyake C, Kouchi T, Yokota A (2000) Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficit. Plant Cell Physiol 41:864–873

    Article  CAS  PubMed  Google Scholar 

  • Koga Y, Ohtake R (1914) Study report on the constituents of squeezed watermelon. J Tokyo Chem Soc 35:519–528

    Google Scholar 

  • Krogh AB, Larsson G, Heijne V, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Laycock MV, Craigie JS (1977) The occurrence and seasonal variation of gigartinine and l-citrullinyl-l-arginine in Chondrus crispus Stackh. Can J Biochem 55:27–30

    Article  CAS  PubMed  Google Scholar 

  • Laycock MV, Morgan KC, Craigie JS (1981) Physiological factors affecting the accumulation of l-citrullinyl-l-arginine in Chondrus crispus. Can J Bot 59:522–527

    Article  CAS  Google Scholar 

  • Lee Y, Jun BO, Kim SG, Kwon YM (1998) Purification of ornithine carbamoyltransferase from kidney bean (Phaseolus vulgaris L.) leaves and comparison of the properties of the enzyme from canavanine-containing and-deficient plants. Planta 205(3):375–379

    Article  CAS  PubMed  Google Scholar 

  • Legrain C, Stalon V, Noullez JP, Mercenier A, Simon JP, Broman K, Wiame JM (1977) Structure and function of ornithine carbamoyltransferases. Eur J Biochem 80:401–409

    Article  CAS  PubMed  Google Scholar 

  • Lemke CT, Howell PL (2001) The 1.6 Å crystal structure of E. coli argininosuccinate synthetase suggests a conformational change during catalysis. Structure 9(12):1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Levi A, Simmons AM, Massey LM, Coffey J, Wechter WP, Jarret RL, Tadmor Y, Nimmakayala P, Reddy U (2017) Genetic diversity in the desert watermelon Citrullus colocynthis and its relationship with Citrullus species as determined by high-frequency oligonucleotides-targeting active gene markers. J Am Soc Hortic Sci 142(1):47–56

    Article  Google Scholar 

  • Lingnell A, Pedersen MF (1987) Nitrogen metabolism in Gracilaria secundata. Hydrobiologia 15(152):431–441

    Article  Google Scholar 

  • Linka M, Weber AP (2005) Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci 10(10):461–465

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zhao S, Cheng Z, Wan X, Yan Z, King S (2010) Lycopene and citrulline concentrations in watermelon (Citrullus lanatus) fruit with different ploidy and changes during fruit development. In: Sun X (ed) Proc. 4th Intl. Symp on Cucurbits Acta Hort, vol 871, pp 543–550

  • Liu H, Sultan MARF, Xl Liu, Zhang J, Yu F, Zhao H (2015) Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum). PLoS One 10(4):e0121852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Liu B, Xue S, Cai Y, Qi W, Jian C, Xu S, Wang T, Ren H (2016) Cucumber (Cucumis sativus L.) nitric oxide synthase associated gene1 (CsNOA1) plays a role in chilling stress. Front Plant Sci 7:1652

    PubMed  PubMed Central  Google Scholar 

  • Ludwig RA (1993) Arabidopsis chloroplasts dissimilate l-arginine and l-citrulline for use as N source. Plant Physiol 101:429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumdar R, Shao L, Minocha R, Long S, Minocha SC (2013) Ornithine: the overlooked molecule in the regulation of polyamine metabolism. Plant Cell Physiol 54:990–1004

    Article  CAS  PubMed  Google Scholar 

  • Majumdar R, Barchi B, Turlapati SA, Gagne M, Minocha R, Long S, Minocha SC (2016) Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci 7:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Massange-Sánchez JA, Palmeros-Suárez PA, Espitia-Rangel E, Rodríguez-Arévalo I, Sánchez-Segura L, Martínez-Gallardo N, Alatorre-Cobos F, Tiessen A, Délano-Frier JP (2016) Overexpression of grain amaranth (A hypochondriacus) AhERF or AhDOF transcription factors in Arabidopsis thaliana increases water deficit- and salt-stress tolerance, respectively, via contrasting stress-amelioration mechanisms. PLoS One 11(10):e0164280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597–W600

    Article  PubMed  PubMed Central  Google Scholar 

  • Micallef BJ, Shelp BJ (1989) Arginine metabolism in developing soybean cotyledons: I. relationship to nitrogen nutrition. Plant Physiol 90:624–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishima E, Hosokawa A, Imaizumi-Anraku H, Saito K, Kawaguchi M, Saeki K (2008) Requirement for Mesorhizobium loti ornithine transcarbamoylase for successful symbiosis with Lotus japonicus as revealed by an unexpected long-range genome deletion. Plant Cell Physiol 49:301–313

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DE, Madore MA (1992) Patterns of assimilate production and translocation in muskmelon (Cucumis melo L.): II. Low-temperature effects. Plant Physiol 99(3):966–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell DE, Gadus MV, Madore MA (1992) Patterns of assimilate production and translocation in muskmelon (Cucumis melo L.). Plant Physiol 99:959–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moinard C, Maccario J, Walrand S, Lasserre V, Marc J, Boirie Y, Cynober L (2016) Arginine behavior after arginine or citrulline administration in older subjects. Br J Nutr 115(3):399–404

    Article  CAS  PubMed  Google Scholar 

  • Molesini B, Mennella G, Martini F, Francese G, Pandolfini T (2015) Involvement of the putative N-acetyl ornithine deacetylase from Arabidopsis thaliana in flowering and fruit development. Plant Cell Physiol 56:1084–1096

    Article  CAS  PubMed  Google Scholar 

  • Mollá-Morales A, Sarmiento-Mañús R, Robles P, Quesada V, Pérez-Pérez JM, González-Bayón R, Hannah MA, Willmitzer L, Ponce MR, Micol JL (2011) Analysis of ven3 and ven6 reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development. Plant J 65:335–345

    Article  PubMed  CAS  Google Scholar 

  • Monné M, Miniero DV, Daddabbo L, Palmieri L, Porcelli V, Palmieri F (2015) Mitochondrial transporters for ornithine and related amino acids: a review. Amino Acids 47(9):1763–1777

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants—where do we stand? Physiol Plant 138(4):372–383

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Hayashi T, Ociai M, Maeda M, Yamaguchi T, Ina K, Kuzuya M (2014) Oral supplementation with a combination of l-citrulline and l-arginine rapidly increases plasma l-arginine concentration and enhances NO bioavailability. Biochem Biophys Res Commun 454:53–57

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Hebelstrup KH, Gupta KJ (2013) Striking a balance: does nitrate uptake and metabolism regulate both NO generation and scavenging? Front Plant Sci 4:288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nasholm T, McDonald AJS (1990) Dependence of amino acid composition upon nitrogen availability in birch (Betula pendula). Physiol Plant 80:507–514

    Article  Google Scholar 

  • Neelam A, Marvier AC, Hall JL, Williams LE (1999) Functional characterization and expression analysis of the amino acid permease RcAAP3 from castor bean. Plant Physiol 120:1049–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmakayala P, Tomason Y, Abburi VL, Rodríguez A, Saminathan T, Vajja VG, Salazar G, Panicker G, Levi A, Wechter W, McCreight J, Korol A, Ronin Y, Garcia-Mas J, Reddy U (2016) Genome-wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high-resolution genetic map. Front Plant Sci 7:1437 (eCollection 2016. PubMed PMID: 27713759; PubMed Central PMCID: PMC5031849)

    PubMed  PubMed Central  Google Scholar 

  • Novák L, Zubáčová Z, Karnkowska A, Kolisko M, Hroudová M, Stairs CW, Simpson AGB, Keeling PJ, Roger AJ, Čepička I, Hampl V (2016) Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evol Biol 16:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Nurhidayati E, Putri SM, Muizzuddin M, Hasyatiningsih G, Pratiwi, Hidayati SZN, Kurniawati A (2015) Watermelon rind meatball, functional food to normalize blood pressure for people with hypertension. In: 3rd ASIAN Academic society international conference, Nakhon Pathom, Thailand, pp 245–253

  • Nunes-Nesi A, Sulpice R, Gibon Y, Fernie AR (2008) The enigmatic contribution of mitochondrial function in photosynthesis. J Exp Bot 59(7):1675–1684

    Article  CAS  PubMed  Google Scholar 

  • Okumoto S, Koch W, Tegeder M, Fischer WN, Biehl A et al (2004) Root phloem-specific expression of the plasma membrane amino acid proton cotransporter AAP3. J Exp Bot 55:2155–2168

    Article  CAS  PubMed  Google Scholar 

  • O’Neal TD, Naylor AW (1976) Some regulatory properties of pea leaf carbamoyl phosphate synthetase. Plant Physiol 57:23–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–66610

    Article  CAS  PubMed  Google Scholar 

  • Palmieri L, Todd CD, Arrigoni R, Hoyos ME, Santoro A, Polacco JC, Palmieri F (2006) Arabidopsis mitochondria have two basic amino acid transporters with partially overlapping specificities and differential expression in seedling development. Biochim Biophys Acta 1757:1277–1283

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F, Rieder B, Ventrella A, Blanco E, Do PT, Nunes-Nesi A, Trauth AU, Fiermonte G, Tjaden J, Agrimi G, Kirchberger S, Paradies E, Fernie AR, Neuhaus HE (2009) Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J Biol Chem. 284(45):31249–31259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66(1):161–181

    Article  CAS  PubMed  Google Scholar 

  • Parker BC (1966) Translocations in macrocystis. III. Composition of sieve tube exudate and identification of the major C14-labeled products. J Phycol 2:38–41

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Delgado CM, García-Calderón M, Márquez AJ, Betti M (2015) Re-assimilation of photorespiratory ammonium in Lotus japonicus plants deficient in plastidic glutamine synthetase. PLoS One 11(5):e0156568

    Article  CAS  Google Scholar 

  • Pick TR, Bräutigam A, Schulz MA, Obata T, Fernie AR, Weber AP (2013) PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc Natl Acad Sci USA 110(8):3185–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potel F, Valadier MH, Ferrario-Méry S, Grandjean O, Morin H, Gaufichon L, Boutet-Mercey S, Lothier J, Rothstein SJ, Hirose N, Suzuki A (2009) Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana: roles of glutamate synthases and carbamoylphosphate synthetase in leaves. FEBS J 2768(1):4061–4076

    Article  CAS  Google Scholar 

  • Quesada V, Ponce MR, Micol JL (1999) OTC and AUL1, two convergent and overlapping genes in the nuclear genome of Arabidopsis thaliana. FEBS Lett 461:101–106

    Article  CAS  PubMed  Google Scholar 

  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. PNAS 101:11506–11510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun H, Cai W, Zhang J, Xu Y (2014) An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol 14:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rimando AM, Perkins-Veazie P (2005) Determination of citrulline in watermelon rind. J Chromatogr 1078:196–200

    Article  CAS  Google Scholar 

  • Sadji M, Perkins-Veazie PM, Ndiaye NF, Traore D, Guoying MA, Zongo C, Traore Y, Sal MD, Traore A (2015) Enhanced L-citrulline in parboiled paddy rice with watermelon (Citrullus lanatus) juice for preventing Sarcopenia: apreliminary study. Afr J Food Sci 9(10):508–513

    Article  CAS  Google Scholar 

  • Sandlin KC, Prothro JM, Heesacker AF, Khalilian N, Okashah R, Xiang W, Bachlava F, Caldwell D, Seymour D, White V, Chan E, Tolla G, White C, Safran D, Graham E, Knapp SJ, McGregor CE (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125(8):1603–1618

    Article  PubMed  Google Scholar 

  • Santolini J, Andre F, Jeandrozb S, Wendehenneb D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63:30–38

    Article  CAS  PubMed  Google Scholar 

  • Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij WJ (2015) Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Immunol 195(1):5–7

    Article  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Schubert KR, Coker GT, Firestone RB (1981) Ammonia assimilation in Alnus glutinosa and glycine max: short-term studies using [13N] ammonium. Plant Physiol 67(4):662–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaik R, Ramakrishna W (2012) Bioinformatic analysis of epigenetic and MicroRNA mediated regulation of drought responsive genes in rice. PLoS One 7(11):e49331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shargool PD, Jain JC, McKay G (1988) Ornithine biosynthesis, and arginine biosynthesis and degradation in plant cells. Phytochemistry 27:1571–1574

    Article  CAS  Google Scholar 

  • Shi HT, Li RJ, Cai W, Liu W, Wang CL, Lu YT (2012) Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance. Plant Cell Physiol 53:344–357

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P et al (2013) Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. J Exp Bot 64:1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi D, Allewell NM, Tuchman M (2015) From genome to structure and back again: a family portrait of the transcarbamylase. Int J Mol Sci 16(8):18836–18864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata H, Ochiai H, Sawa Y, Miyoshi S (1986) Localization of carbamoylphosphate synthetase and aspartate carbamoyltransferase in chloroplasts. Plant Physiol 80:126–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Sikdar SI, Kim J (2009) Characterization of a gene encoding acetylornithine deacetylase from rice. J Plant Biotechnol 36:397–402

    Article  Google Scholar 

  • Slocum RD (1991) Tissue and subcellular localization of polyamines and enzymes of polyamine metabolism. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 93–103

    Google Scholar 

  • Slocum RD (2005) Genes, enzymes, and regulation of arginine biosynthesis in plants. Plant Physiol Biochem 43:729–745

    Article  CAS  PubMed  Google Scholar 

  • Slocum RD, Nichols HF III, Williamson CL (2000) Purification and characterization of Arabidopsis ornithine transcarbamoylase (OTCase), a member of a distinct and evolutionarily conserved group of plant OTCases. Plant Physiol Biochem 38:279–288

    Article  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4(6):1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Soteriou GA, Kyriacou MC, Siomos AS, Gerasopoulos D (2014) Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem 165:282–289

    Article  CAS  PubMed  Google Scholar 

  • Stalon V (1972) Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A study of the allosteric interactions. Eur J Biochem 29:36–46

    Article  CAS  PubMed  Google Scholar 

  • Su L, Ma Y, Wu J (2015) Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of l-citrulline. Bioresour Technol 196:176–183

    Article  CAS  PubMed  Google Scholar 

  • Svennerstam H, Ganeteg U, Nasholm T (2008) Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease. New Phytol 180:620–626

    Article  CAS  PubMed  Google Scholar 

  • Takahara K, Akashi K, Yokota A (2005) Purification and characterization of glutamate N-acetyltransferase involved in citrulline accumulation in wild watermelon. FEBS J 272:5353–5364

    Article  CAS  PubMed  Google Scholar 

  • Tanemura R, Ohyama T (2012) Nitrogen nutrition and amino acid metabolism in cucumber. Nova Science Publishers, Inc., New York, pp 1–11

    Google Scholar 

  • Taylor AA, Stewart GR (1981) Tissue and subcellular localization of enzymes of arginine metabolism in Pisum sativum. Biochem Biophys Res Commun 101:1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Taylor MR, Reinders A, Ward JM (2015) Transport function of rice amino acid permeases (AAPs). Plant Cell Physiol 56(7):1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Tegeder M (2012) Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol 15:1–7

    Article  CAS  Google Scholar 

  • Tlili I, Hdider C, Lenucci MS, Jeban H, Dalessandro G (2011) Bioactive compounds and antioxidant activities of different watermelon Citrullus lanatus (Thunb.) (Mansfeld) cultivars affected by fruit sampling area. J Food Compos Anal 24(3):307–314

    Article  CAS  Google Scholar 

  • Tohge T, Ramos MS, Nunes-Nesi A, Mutwil M, Giavalisco P, Steinhauser D, Schellenberg M, Willmitzer L, Persson S, Martinoia E, Fernie AR (2011) Toward the storage metabolome: profiling the barley vacuole. Plant Physiol 157(3):1469–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toka I, Planchais S, Cabassa C, Justin AM, De Vos D, Richard L, Savouré A, Carol P (2010) Mutations in the hyperosmotic stress-responsive mitochondrial BASIC AMINO ACID CARRIER2 enhance proline accumulation in Arabidopsis. Plant Physiol. 152(4):1851–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada M (1930) On the occurrence of a new amino acid in Watermelon, Citrullus Vulgaris, Schrad. Bull Agric Chem Soc Jpn 6:32–34

    Article  Google Scholar 

  • Walsh KB, Ng BH, Chandler GE (1984) Effects of nitrogen nutrition on xylem sap composition of Casuarinaceae. Plant Soil 81:291–293

    Article  CAS  Google Scholar 

  • Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, Zhu G, Qi J, Ma H, Nian H, Wang Y (2014) RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol 14:169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williamson CL, Lake MR, Slocum RD (1996) Isolation and characterization of a cDNA encoding a pea ornithine transcarbamoylase (arg F) and comparison with other transcarbamoylases. Plant Mol Biol 31:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Winter G, Todd CD, Trovato M, Forlani G, Funck D (2015) Physiological implications of arginine metabolism in plants. Front in Plant Sci 6:534

    Article  Google Scholar 

  • Xia J, Yamaji N, Che J, Shen RF, Ma JF (2014a) Normal root elongation requires arginine produced by argininosuccinate lyase in rice. Plant J 78:215–226

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Yamaji N, Ma JF (2014b) An appropriate concentration of arginine is required for normal root growth in rice. Plant Signal Behav 9:e28717

    Article  PubMed Central  CAS  Google Scholar 

  • Yang K, Liang Z, Wu CJ (2016a) Analysis of differentially expressed genes in watermelon rind color based on RNA-Seq. J Cent South Univ 23:2818

    Article  CAS  Google Scholar 

  • Yang Y, Mo Y, Yang X, Zhang H, Wang Y, Li H, Wei C, Zhang X (2016b) Transcriptome profiling of watermelon root in response to short-term osmotic stress. PLoS One 11(11):e0166314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokota A, Kawasaki S, Iwano M, Nakamura C, Miyake C, Akashi K (2002) Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Ann Bot (Lond.) 89:825–832

    Article  CAS  Google Scholar 

  • Zhang H, Gong G, Guo S, Ren Y, Xu Y (2011) Screening the USDA watermelon germplasm collection for drought tolerance at the seedling stage. HortScience 46:1245–1248

    CAS  Google Scholar 

  • Zhu Q, Gao P, Liu S, Zhu Z, Amanullah S, Davis AR, Luan F (2017) Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. BMC Genomics 18(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegler H, Schnabel M (1961) Uber Harnstoffderivate im Siebrohrensaft. Flora (Jena) 150:306–317

    CAS  Google Scholar 

  • Zúñiga M, Pérez G, González-Candelas F (2002) Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol 25(3):429–444

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Joshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: J. D. Wade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2017_2468_MOESM1_ESM.pdf

Supplementary material 1 (PDF 783 kb) Supplemental Table 1 Table shows gene IDs associated with citrulline metabolism in watermelon and orthologous genes from selected Cucurbita species retrieved from the website of the Cucurbit Genomics Database (International Cucurbit Genomics Initiative; ICuGI; http://cucurbitgenomics.org/)

Supplementary material 2 (PDF 110 kb)

726_2017_2468_MOESM3_ESM.pdf

Supplementary material 3 (PDF 296 kb) Supplemental Fig. 1 Percent distribution of total amino acids across the rind and flesh tissues in the matured watermelon fruit (cultivar; Charleston Gray; n = 4).

726_2017_2468_MOESM4_ESM.pdf

Supplementary material 4 (PDF 403 kb) Supplemental Fig. 2 Alignment of watermelon OTC (Cla020781) with OTCases from XP_008466541 (Cucumis melo), XP_004147858 (Cucumis sativus), XP_007223218 (Prunus persica), NP_001316345 (Solanum lycopersicum), XP_007136615 (Phaseolus vulgaris), NP_177667 (Arabidopsis thaliana), XP_015625132 (Oryza sativa Japonica), AAI07155.1 (Homo sapiens), and WP_021561032 (Escherichia coli). The conserved SMRTR (residues 126–130) carbamoyl-P binding domain and the FMHCLP (residues 333–338) a binding domain for l-ornithine are highlighted in purple. Protein alignments were carried out using the Clustal Omega program (McWilliam et al. 2013)

726_2017_2468_MOESM5_ESM.pdf

Supplementary material 5 (PDF 516 kb) Supplemental Fig. 3 Alignment of watermelon N-acetylornithine deacetylase NAODs (Cla016179, Cla016181, Cla016180—DIP1) with AODs from AAG25896.1 (Cucurbita pepo), XP_008465960.1, XP_008465958.1, XP_008465959.1 (Cucumis melo), Q9C5C4 (At4g17830—Arabidopsis thaliana), NP_418392.1 (Escherichia coli), and Csa3G902920, Csa3G902910, and Csa3G902410 (Cucumis sativus). Protein alignments were carried out using the Clustal Omega program (McWilliam et al. 2013)

726_2017_2468_MOESM6_ESM.pdf

Supplementary material 6 (PDF 455 kb) Supplemental Fig. 4 Alignment of watermelon arginosuccinate synthase/synthetase ASSs (Cla019267, Cla002611, Cla002609) with ASSs from AT4G24830 (Arabidopsis thaliana), LOC_Os12g13320.1 and LOC_Os11g19770.1 (Oryza sativa Japonica), XP_004138056.1 (Cucumis sativus), ACI77470 (Escherichia coli), and AAA51783 (Homo sapiens). The conserved region (S-x-D-x-N-x(6)-E) involved in the citrulline and ATP binding, domain (E-[N/D]-R-x(4)-K-x(4)-Y-E) involved in the citrulline–aspartate binding loop and the consensus sequence (G-x-T-x-K-G-N-D-x(2)-R-F) involved in the aspartate binding are shown in green colors. Protein alignments were carried out using the Clustal Omega program (McWilliam et al. 2013)

726_2017_2468_MOESM7_ESM.pdf

Supplementary material 7 (PDF 425 kb) Supplemental Fig. 5 Alignment of watermelon arginosuccinate lyase ASLs (Cla022154, Cla023055) with ASLs from AT5G10920 (Arabidopsis thaliana), LOC_Os03g19280.1 (Oryza sativa Japonica), WP_032252793.1 (Escherichia coli), XP_008466162 (Cucumis melo), XP_004136255 (Cucumis sativus) and pdb|1AOS (Homo sapiens). The conserved region DREDV region shows arginine ‘R’ residue that led to the point mutation red1 (R140L) in the rice argininosuccinate lyase (ASL). Protein alignments were carried out using the Clustal Omega program (McWilliam et al. 2013)

726_2017_2468_MOESM8_ESM.pdf

Supplementary material 8 (PDF 169 kb) Supplemental Fig. 6 Phylogenetic analysis of putative amino acid transporters from watermelon and Arabidopsis generated using multiple sequence alignment using Clustal Omega program (Sievers et al. 2011)

726_2017_2468_MOESM9_ESM.pdf

Supplementary material 9 (PDF 24 kb) Supplemental Fig. 7a and 7b Phylogenetic tree of selected amino acid permeases and sequence alignment of selected watermelon (Cla023090, Cla013912, Cla023187) genes with RcAAP3 (NP_001310657.1 amino acid permease 3; Ricinus communis), AtAAP3 (NP_177862.1 amino acid permease 3; Arabidopsis thaliana), AtAAP5 (NP_175076.2 amino acid permease 5; Arabidopsis thaliana), OsAAP1 (BAG99938.1 Oryza sativa Japonica), OsAAP3 (BAG95706.1 Oryza sativa Japonica), AtAAP1 (NP_176132.1; Arabidopsis thaliana) and AtAAP58 (NP_172472.1; Arabidopsis thaliana)

Supplementary material 10 (PDF 418 kb)

726_2017_2468_MOESM11_ESM.pdf

Supplementary material 11 (PDF 302 kb) Supplemental Fig. 8 Prediction of transmembrane helices in the watermelon genes (Cla023090, Cla013912, Cla023187) was calculated using TMHMM (Krogh et al. 2001). The description of analysis shows a number of predicted TMHs—predicted the number of transmembrane helices, expected the number of amino acids in transmembrane helices, expected number of amino acids in transmembrane helices in the first 60 amino acids of the protein

Supplementary material 12 (PDF 230 kb)

Supplementary material 13 (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, V., Fernie, A.R. Citrulline metabolism in plants. Amino Acids 49, 1543–1559 (2017). https://doi.org/10.1007/s00726-017-2468-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2468-4

Keywords

Navigation