Skip to main content

Advertisement

Log in

Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The cysteine dioxygenase (Cdo1)-null and the cysteine sulfinic acid decarboxylase (Csad)-null mouse are not able to synthesize hypotaurine/taurine by the cysteine/cysteine sulfinate pathway and have very low tissue taurine levels. These mice provide excellent models for studying the effects of taurine on biological processes. Using these mouse models, we identified betaine:homocysteine methyltransferase (BHMT) as a protein whose in vivo expression is robustly regulated by taurine. BHMT levels are low in liver of both Cdo1-null and Csad-null mice, but are restored to wild-type levels by dietary taurine supplementation. A lack of BHMT activity was indicated by an increase in the hepatic betaine level. In contrast to observations in liver of Cdo1-null and Csad-null mice, BHMT was not affected by taurine supplementation of primary hepatocytes from these mice. Likewise, CSAD abundance was not affected by taurine supplementation of primary hepatocytes, although it was robustly upregulated in liver of Cdo1-null and Csad-null mice and lowered to wild-type levels by dietary taurine supplementation. The mechanism by which taurine status affects hepatic CSAD and BHMT expression appears to be complex and to require factors outside of hepatocytes. Within the liver, mRNA abundance for both CSAD and BHMT was upregulated in parallel with protein levels, indicating regulation of BHMT and CSAD mRNA synthesis or degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BHMT:

Betaine:homocysteine methyltransferase

CDO:

Cysteine dioxygenase

CSAD:

Cysteine sulfinic acid decarboxylase

SHP:

Small heterodimer partner

References

  • Agca CA, Tuzcu M, Hayirli A, Sahin K (2014) Taurine ameliorates neuropathy via regulating NF-κB and Nrf2/HO-1 signaling cascades in diabetic rats. Food Chem Toxicol 71:116–121

    Article  CAS  PubMed  Google Scholar 

  • Bagley PJ, Stipanuk MH (1994) The activities of rat hepatic cysteine dioxygenase and cysteinesulfinate decarboxylase are regulated in a reciprocal manner in response to dietary casein level. J Nutr 124:2410–2421

    CAS  PubMed  Google Scholar 

  • Bella DL, Hahn C, Stipanuk MH (1999a) Effects of nonsulfur and sulfur amino acids on the regulation of hepatic enzymes of cysteine metabolism. Am J Physiol 277(1 Pt 1):E144–E153

    CAS  PubMed  Google Scholar 

  • Bella DL, Hirschberger LL, Hosokawa Y, Stipanuk MH (1999b) Mechanisms involved in the regulation of key enzymes of cysteine metabolism in rat liver in vivo. Am J Physiol 276(2 Pt 1):E326–E335

    CAS  PubMed  Google Scholar 

  • Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, Edwards PA, Hazen SL, Lusis AJ (2013) Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17:49–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bitoun M, Tappaz M (2000) Gene expression of taurine transporter and taurine biosynthetic enzymes in brain of rats with acute or chronic hyperosmotic plasma. A comparative study with gene expression of myo-inositol transporter, betaine transporter and sorbitol biosynthetic enzyme. Brain Res Mol Brain Res 77:10–18

    Article  CAS  PubMed  Google Scholar 

  • Bitoun M, Levillain O, Tappaz M (2001) Gene expression of the taurine transporter and taurine biosynthetic enzymes in rat kidney after antidiuresis and salt loading. Pflugers Arch 442:87–95

    Article  CAS  PubMed  Google Scholar 

  • Burger-Kentischer A, Müller E, März J, Fraek ML, Thurau K, Beck FX (1999) Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells. Kidney Int 55:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Cresenzi CL, Lee JI, Stipanuk MH (2003) Cysteine is the metabolic signal responsible for dietary regulation of hepatic cysteine dioxygenase and glutamate cysteine ligase in intact rats. J Nutr 133:2697–2702

    CAS  PubMed  Google Scholar 

  • De La Rosa J, Stipanuk MH (1985) The effect of taurine depletion with guanidinoethanesulfonate on bile acid metabolism in the rat. Life Sci 36:1347–1351

    Article  PubMed  Google Scholar 

  • Dominy JE Jr, Hirschberger LL, Coloso RM, Stipanuk MH (2006a) In vivo regulation of cysteine dioxygenase via the ubiquitin-26S proteasome system. Adv Exp Med Biol 583:37–47

    Article  CAS  PubMed  Google Scholar 

  • Dominy JE Jr, Hirschberger LL, Coloso RM, Stipanuk MH (2006b) Regulation of cysteine dioxygenase degradation is mediated by intracellular cysteine levels and the ubiquitin-26 S proteasome system in the living rat. Biochem J 394(Pt 1):267–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dominy JE Jr, Hwang J, Guo S, Hirschberger LL, Zhang S, Stipanuk MH (2008) Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity. J Biol Chem 283:12188–12201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallazzini M, Ferraris JD, Burg MB (2008) GDPD5 is a glycerophosphocholine phosphodiesterase that osmotically regulates the osmoprotective organic osmolyte GPC. Proc Natl Acad Sci USA 105:11026–11031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffmann L, Brauers G, Gehrmann T, Häussinger D, Mayatepek E, Schliess F, Schwahn BC (2013) Osmotic regulation of hepatic betaine metabolism. Am J Physiol Gastrointest Liver Physiol 304:G835–G846

    Article  CAS  PubMed  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    CAS  PubMed  Google Scholar 

  • Ito T, Schaffer SW, Azuma J (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42:1529–1539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang H, Stabler SP, Allen RH, Abman SH, Maclean KN (2014) Altered hepatic sulfur metabolism in cystathionine β-synthase-deficient homocystinuria: regulatory role of taurine on competing cysteine oxidation pathways. FASEB J 28:4044–4054

    Article  CAS  PubMed  Google Scholar 

  • Kerr TA, Matsumoto Y, Matsumoto H, Xie Y, Hirschberger LL, Stipanuk MH, Anakk S, Moore DD, Watanabe M, Kennedy S, Davidson NO (2013) Cysteine sulfinic acid decarboxylase regulation: a role for farnesoid X receptor and small heterodimer partner in murine hepatic taurine metabolism. Hepatol Res. doi:10.1111/hepr.12230

    PubMed Central  PubMed  Google Scholar 

  • Kwon YH, Stipanuk MH (2001) Cysteine regulates expression of cysteine dioxygenase and gamma-glutamylcysteine synthetase in cultured rat hepatocytes. Am J Physiol Endocrinol Metab 280:E804–E815

    CAS  PubMed  Google Scholar 

  • Liu X, Ser Z, Locasale JW (2014) Development and quantitative evaluation of a high-resolution metabolomics technology. Anal Chem 86:2175–2184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mong MC, Chao CY, Yin MC (2011) Histidine and carnosine alleviated hepatic steatosis in mice consumed high saturated fat diet. Eur J Pharmacol 653:82–88

    Article  CAS  PubMed  Google Scholar 

  • Park E, Park SY, Dobkin C, Schuller-Levis G (2014) Development of a novel cysteine sulfinic acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality. J Amino Acids. doi:10.1155/2014/346809

    PubMed Central  PubMed  Google Scholar 

  • Rentschler LA, Hirschberger LL, Stipanuk MH (1986) Response of the kitten to dietary taurine depletion: effects on renal reabsorption, bile acid conjugation and activities of enzymes involved in taurine synthesis. Comp Biochem Physiol B 84:319–325

    Article  CAS  PubMed  Google Scholar 

  • Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–2686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roman HB, Hirschberger LL, Krijt J, Valli A, Kožich V, Stipanuk MH (2013) The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS(-) production and evidence of pancreatic and lung toxicity. Antioxid Redox Signal 19:1321–1336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schäfer C, Hoffmann L, Heldt K, Lornejad-Schäfer MR, Brauers G, Gehrmann T, Garrow TA, Häussinger D, Mayatepek E, Schwahn BC, Schliess F (2007) Osmotic regulation of betaine homocysteine-S-methyltransferase expression in H4IIE rat hepatoma cells. Am J Physiol Gastrointest Liver Physiol 292:G1089–G1098

    Article  PubMed  Google Scholar 

  • Stipanuk MH, Londono M, Lee JI, Hu M, Yu AF (2002) Enzymes and metabolites of cysteine metabolism in nonhepatic tissues of rats show little response to changes in dietary protein or sulfur amino acid levels. J Nutr 132:3369–3378

    CAS  PubMed  Google Scholar 

  • Stipanuk MH, Hirschberger LL, Londono MP, Cresenzi CL, Yu AF (2004) The ubiquitin-proteasome system is responsible for cysteine-responsive regulation of cysteine dioxygenase concentration in liver. Am J Physiol Endocrinol Metab 286:E439–E448

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk MH, Dominy JE Jr, Ueki I, Hirschberger LL (2008) Measurement of cysteine dioxygenase activity and protein abundance. Curr Protoc Toxicol 38:6.15.1–6.15.25

  • Stipanuk MH, Ueki I, Dominy JE Jr, Simmons CR, Hirschberger LL (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teng YW, Mehedint MG, Garrow TA, Zeisel SH (2011) Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem 286:36258–36267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk MH (2011) Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301:E668–E684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warskulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H, Lang F, Häussinger D (2007) Phenotype of the taurine transporter knockout mouse. Methods Enzymol 428:439–458

    Article  CAS  PubMed  Google Scholar 

  • Wójcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chen Y (2010) The potential protective effects of taurine on coronary heart disease. Atherosclerosis 208:19–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208(Pt 15):2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Blake WR, Conley J (2002) Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp Biochem Physiol A Mol Integr Physiol 133:667–676

    Article  PubMed  Google Scholar 

  • Tsuchiya H, Costa KA, Lee S, Renga B, Jaeschke H, Yang Z, Orena SJ, Goedken MJ, Zhang Y, Kong B, Lebofsky M, Rudraiah S, Smalling R, Guo G, Fiorucci S, Zeisel SH, Wang L (2015) Interactions between nuclear receptor SHP and FOXA1 maintain oscillatory homocysteine homeostasis in mice. Gastroenterol 148:1012–1023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha H. Stipanuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This project was supported by Grants DK056649, CA168997 and AI110613 from the National Institutes of Health and by the New York State Office for People with Developmental Disabilities. HJ was supported by a “Mobility Plus” fellowship from the Ministry of Science and Higher Education (MNISW), Republic of Poland. The content is solely the responsibility of the authors.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All experimental procedures involving Cdo1 +/ mice and their offspring were conducted with the approval of the Cornell University Institutional Animal Care and Use Committee (#2009-0138). All experimental procedures involving Csad-null mice were conducted with the approval of the Institutional Animal Care and Use Committee of the New York State Institute for Basic Research in Developmental Disabilities (#392).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurkowska, H., Niewiadomski, J., Hirschberger, L.L. et al. Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo. Amino Acids 48, 665–676 (2016). https://doi.org/10.1007/s00726-015-2108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2108-9

Keywords

Navigation