Skip to main content
Log in

The l-arginine/NO pathway, homoarginine, and nitrite-dependent renal carbonic anhydrase activity in young people with type 1 diabetes mellitus

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

High circulating levels of asymmetric dimethylarginine (ADMA) and low circulating levels of homoarginine (hArg) are known cardiovascular risk factors in adults. While in adults with type 1 diabetes mellitus (T1DM) circulating ADMA is significantly elevated, in children and adolescents the reported ADMA data are contradictory. In 102 children with T1DM and 95 healthy controls (HC) serving as controls, we investigated the l-arginine (Arg)/nitric oxide (NO) pathway. Children with T1DM were divided into two groups, i.e., in children with newly diagnosed diabetes mellitus [T1DM-ND; n = 10; age, 8.8 (4.4–11.2) years; HbA1c, 13 (8.9–13.9) %] and in those with long-term treatment [T1DM-T; n = 92; age, 12.5 (10.5–15.4) years; HbA1c, 8.0 (7.2–8.6) %]. The age of the HC was 11.3 (8–13.3) years. Amino acids and NO metabolites of the Arg/NO pathway, creatinine and the oxidative stress biomarker malondialdehyde (MDA) were measured by GC–MS or GC–MS/MS. Plasma hArg, ADMA and the hArg/ADMA molar ratio did not differ between the T1DM and HC groups. There was a significant difference between T1DM-T and HC with regard to plasma nitrite [0.53 (0.48–0.61) vs 2.05 (0.86–2.36) µM, P < 0.0001] as well as to urinary nitrite [0.09 (0.06–0.17) vs 0.22 (0.13–0.37) μmol/mmol creatinine, P < 0.0001]. Plasma, but not urinary nitrite, differed between T1DM-ND and HC [0.55 (0.50–0.66) vs 2.05 (0.86–2.36) µM, P < 0.0001]. Plasma MDA did not differ between the groups. The urinary nitrate-to-nitrite molar ratio (UNOXR), a measure of nitrite-dependent renal carbonic anhydrase (CA) activity, was higher in T1DM-T [1173 (738–1481), P < 0.0001] and T1DM-ND [1341 (1117–1615), P = 0.0007] compared to HC [540 (324–962)], but did not differ between T1DM-T and T1DM-ND (P = 0.272). The lower nitrite excretion in the children with T1DM may indicate enhanced renal CA-dependent nitrite reabsorption compared with healthy children. Yet, lower plasma nitrite concentration in the T1DM patients may have also contributed to the higher UNOXR. Patients’ age correlated positively with plasma hArg and hArg/ADMA and urinary DMA/ADMA. Plasma ADMA and urinary ADMA, DMA, nitrite and nitrate correlated negatively with age of the T1DM-T children. Significant correlations were found between plasma hArg and plasma Arg (r = 0.468, P < 0.0001), and urinary DMA (r = −0.426, P = 0.0001), ADMA (r = −0.266, P = 0.021) and nitrate (r = −0.234, P = 0.043). Plasma hArg correlated positively with age at diagnosis (r = +0.337, P = 0.002). ADMA, but not hArg, correlated with HbA1c in T1DM-T (r = −0.418, P < 0.0001) and T1DM-ND (r = +0.879, P = 0.0016). The greatest differences between T1DM-T and T1DM-ND were observed for urinary ADMA, DMA/ADMA ratio, nitrite and nitrate. The Arg/NO pathway is altered in T1DM in childhood and adolescence, yet the role and the importance of hArg and ADMA in T1DM remain to be elucidated. In young T1DM patients, oxidative stress (lipid peroxidation) is not elevated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADMA:

Asymmetric dimethylarginine

Arg:

l-Arginine

BMI:

Body mass index

CA:

Carbonic anhydrase

DDAH:

Dimethylarginine dimethylaminohydrolase

DMA:

Dimethylamine

GFR:

Glomerular filtration rate

hArg:

l-Homoarginine

HC:

Healthy controls

MDA:

Malondialdehyde

NO:

Nitric oxide

NOS:

Nitric oxide synthase

eNOS:

Endothelial NOS

iNOS:

Inducible NOS

nNOS:

Neuronal NOS

PNOxR:

Plasma nitrate-to-nitrite molar ratio

QC:

Quality control

T1DM:

Type 1 diabetes mellitus

T1DM-ND:

Newly diagnosed T1DM

T1DM-T:

Treated T1DM

UNOxR:

Urinary nitrate-to-nitrite molar ratio

References

  • Aamand R, Dalsgaard T, Jensen FB, Simonsen U, Roepstorff A, Fago A (2009) Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation. Am J Physiol Heart Circ Physiol 297:H2068–H2074

    Article  CAS  PubMed  Google Scholar 

  • Al-Agha AE, Ocheltree A, Hakeem A (2013) Occurrence of microalbuminuria among children and adolescents with insulin-dependent diabetes mellitus. Saudi J Kidney Dis Transpl 24:1180–1188

  • Altinova AE, Arslan M, Sepici-Dincel A, Akturk M, Altan N, Toruner FB (2007) Uncomplicated type 1 diabetes is associated with increased asymmetric dimethylarginine concentrations. J Clin Endocrinol Metab 92:1881–1885

    Article  CAS  PubMed  Google Scholar 

  • Böger RH (2004) Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “l-arginine paradox” and acts as a novel cardiovascular risk factor. J Nutr 134:2842–2847

    Google Scholar 

  • Böger RH (2006) Asymmetric dimethylarginine (ADMA): a novel risk marker in cardiovascular medicine and beyond. Ann Med 38:126–136

  • Böger RH, Sullivan LM, Schwedhelm E, Wang TJ, Maas R, Benjamin EJ, Schulze F, Xanthakis V, Benndorf RA, Vasan RS (2009) Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation 119:1592–1600

    Article  PubMed Central  PubMed  Google Scholar 

  • Böhmer A, Großkopf H, Jordan J, Tsikas D (2012) Human hemoglobin does not contain asymmetric dimethylarginine (ADMA). Nitric Oxide 27:72–74

    Article  PubMed  Google Scholar 

  • Brooks ER, Langman CB, Wang S, Price HE, Hodges AL, Darling L, Yang AZ, Smith FA (2009) Methylated arginine derivatives in children and adolescents with chronic kidney disease. Pediatr Nephrol 24:129–134

    Article  PubMed  Google Scholar 

  • Cerami A, Stevens VJ, Monnier VM (1979) Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus. Metabolism 28:431–437

    Article  CAS  PubMed  Google Scholar 

  • Chobanyan-Jürgens K, Fuchs AJ, Tsikas D, Kanzelmeyer N, Das AM, Illsinger S, Vaske B, Jordan J, Lücke T (2012a) Increased asymmetric dimethylarginine (ADMA) dimethylaminohydrolase (DDAH) activity in childhood hypercholesterolemia type II. Amino Acids 43:805–811

    Article  PubMed  Google Scholar 

  • Chobanyan-Jürgens K, Schwarz A, Böhmer A, Beckmann B, Gutzki FM, Michaelsen JT, Stichtenoth DO, Tsikas D (2012b) Renal carbonic anhydrases are involved in the reabsorption of endogenous nitrite. Nitric Oxide 26:126–131

    Article  PubMed  Google Scholar 

  • Cighetti G, Fermo I, Aman CS, Ferraroni M, Secchi A, Fiorina P, Paroni R (2009) Dimethylarginines in complicated type 1 diabetes: roles of insulin, glucose, and oxidative stress. Free Radic Biol Med 47:307–311

    Article  CAS  PubMed  Google Scholar 

  • Davids M, van Hell AJ, Visser M, Nijveldt RJ, van Leeuwen PA, Teerlink T (2012) Role of the human erythrocyte in generation and storage of asymmetric dimethylarginine. Am J Physiol Heart Circ Physiol 302:H1762–H1770

    Article  CAS  PubMed  Google Scholar 

  • Dreissigacker U, Suchy MT, Maassen N, Tsikas D (2010) Human plasma concentrations of malondialdehyde (MDA) and the F2-isoprostane 15(S)-8-iso-PGF(2alpha) may be markedly compromised by hemolysis: evidence by GC-MS/MS and potential analytical and biological ramifications. Clin Biochem 43:159–167

    Article  CAS  PubMed  Google Scholar 

  • Ellger B, Richir MC, van Leeuwen PA, Debaveye Y, Langouche L, Vanhorebeek I, Teerlink T, Van den Berghe G (2008) Glycemic control modulates arginine and asymmetrical-dimethylarginine levels during critical illness by preserving dimethylarginine-dimethylaminohydrolase activity. Endocrinology 149:3148–3157

    Article  CAS  PubMed  Google Scholar 

  • Głowińska-Olszewska B, Luczyński W, Jabłońska J, Otocka A, Florys B, Bossowski A (2010) Asymmetric dimethylarginine (ADMA) in children with diabetes type 1. Pediatr Endocrinol Diabetes Metab 16:137–141

    PubMed  Google Scholar 

  • Grosskopf H, Böhmer A, Tsikas D (2012) Letter to the editor: “Role of the human erythrocyte in generation and storage of asymmetric dimethylarginine”. Am J Physiol Heart Circ Physiol 303:H751–H752

    Article  PubMed  Google Scholar 

  • Hasanoğlu A, Okur I, Oren AC, Biberoğlu G, Oktar S, Eminoğlu FT, Tümer L (2011) The levels of asymmetric dimethylarginine, homocysteine and carotid intima-media thickness in hypercholesterolemic children. Turk J Pediatr 53:522–527

    PubMed  Google Scholar 

  • Heilman K, Zilmer M, Kool P, Tillmann V (2009) Elevated plasma adiponectin and decreased plasma homocysteine and asymmetric dimethylarginine in children with type 1 diabetes. Scand J Clin Lab Invest 69:85–91

    Article  CAS  PubMed  Google Scholar 

  • Horowitz JD, Heresztyn T (2007) An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: methodological considerations. J Chromatogr B 851:42–50

    Article  CAS  Google Scholar 

  • Huemer M, Simma B, Mayr D, Mühl A, Rami B, Schober E, Ulmer H, Zanier U, Bodamer OA (2011) Low levels of asymmetric dimethylarginine in children with diabetes mellitus type I compared with healthy children. J Pediatr 158:602–606

    Article  CAS  PubMed  Google Scholar 

  • Jehlicka P, Stozický F, Mayer O, Varvarovská J, Racek J, Trefil L, Siala K (2009) Asymmetric dimethylarginine and the effect of folate substitution in children with familial hypercholesterolemia and diabetes mellitus type 1. Physiol Res 58:179–184

    CAS  PubMed  Google Scholar 

  • Kanzelmeyer N, Tsikas D, Chobanyan-Jürgens K, Beckmann B, Vaske B, llsinger S, Das AM, Lücke T (2012) Asymmetric dimethylarginine in children with homocystinuria or phenylketonuria. Amino Acids 42:1765–1772

    Article  CAS  PubMed  Google Scholar 

  • Kayacelebi AA, Beckmann B, Gutzki FM, Jordan J, Tsikas D (2014) GC-MS and GC-MS/MS measurement of the cardiovascular risk factor homoarginine in biological samples. Amino Acids 46: 2205–2217

    Article  CAS  PubMed  Google Scholar 

  • Keimer R, Stutzer FK, Tsikas D, Troost R, Gutzki FM, Frölich JC (2003) Lack of oxidative stress during sustained therapy with isosorbide dinitrate and pentaerythrityl tetranitrate in healthy humans: a randomized, double-blind crossover study. J Cardiovasc Pharmacol 41:284–292

    Article  CAS  PubMed  Google Scholar 

  • Kielstein JT, Impraim B, Simmel S, Bode-Böger SM, Tsikas D, Frölich JC, Hoeper MM, Haller H, Fliser D (2004) Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 109:172–177

    Article  CAS  PubMed  Google Scholar 

  • Krebs A, Doerfer J, Grünert SC, Wöhrl J, Stier B, Schmidt-Trucksäss A, Lichte K, Winkler K, Grulich-Henn J, Holder M, Schwab KO (2015) Decreased levels of homoarginine and asymmetric dimethylarginine in children with type 1 diabetes: associations with cardiovascular risk factors but no effect by atorvastatin. J Pediatr Endocrinol Metab 28:147–152

    Article  CAS  PubMed  Google Scholar 

  • Lajer M, Tarnow L, Jorsal A, Teerlink T, Parving HH, Rossing P (2009) Plasma concentration of asymmetric dimethylarginine (ADMA) predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care 31:747–752

  • Lücke T, Tsikas D, Kanzelmeyer N, Vaske B, Das AM (2006) Elevated plasma concentrations of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine in citrullinemia. Metabolism 55:1599–1603

    Article  PubMed  Google Scholar 

  • Lücke T, Kanzelmeyer N, Kemper MJ, Tsikas D, Das AM (2007) Developmental changes in the l-arginine/nitric oxide pathway from infancy to adulthood: plasma asymmetric dimethylarginine levels decrease with age. Clin Chem Lab Med 45:1525–1530

    Article  PubMed  Google Scholar 

  • Lücke T, Kanzelmeyer N, Chobanyan K, Tsikas D, Franke D, Kemper MJ, Ehrich JH, Das AM (2008) Elevated asymmetric dimethylarginine (ADMA) and inverse correlation between circulating ADMA and glomerular filtration rate in children with sporadic focal segmental glomerulosclerosis (FSGS). Nephrol Dial Transplant 23:734–740

    Article  PubMed  Google Scholar 

  • Marcovecchio ML, Widmer B, Dunger DB, Dalton RN (2008) Effect of acute variations of insulin and glucose on plasma concentrations of asymmetric dimethylarginine in young people with Type 1 diabetes. Clin Sci (Lond) 115:361–369

    Article  CAS  Google Scholar 

  • Marcovecchio ML, Widmer B, Turner C, Dunger DB, Dalton RN (2011) Asymmetric dimethylarginine in young people with Type 1 diabetes: a paradoxical association with HbA(1c). Diabet Med 28:685–691

    Article  CAS  PubMed  Google Scholar 

  • Marletta MA (1993) Nitric oxide synthase: function and mechanism. Adv Exp Med Biol 338:281–284

    Article  CAS  PubMed  Google Scholar 

  • Martens-Lobenhoffer J, Bode-Böger SM (2012) Quantification of l-arginine, asymmetric dimethylarginine and symmetric dimethylarginine in human plasma: a step improvement in precision by stable isotope dilution mass spectrometry. J Chromatogr B 904:140–143

    Article  CAS  Google Scholar 

  • März W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME, Fischer J, Winkelmann BR, Böhm BO, Ritz E, Wanner C (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967–975

    Article  PubMed  Google Scholar 

  • Mittermayer F, Pleiner J, Krzyzanowska K, Wiesinger GF, Francesconi M, Wolzt M (2005) Regular physical exercise normalizes elevated asymmetrical dimethylarginine concentrations in patients with type 1 diabetes mellitus. Wien Klin Wochenschr 117:816–820

  • Modun D, Krnic M, Vukovic J, Kokic V, Kukoc-Modun L, Tsikas D, Dujic Z (2012) Plasma nitrite concentration decreases after hyperoxia-induced oxidative stress in healthy humans. Clin Physiol Funct Imaging 32:404–408

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Higgs EA (2006) The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147:193–201

    Article  Google Scholar 

  • Önder A, Aycan Z, Koca C, Ergin M, Çetinkaya S, Ağladıoğlu SY, Peltek Kendirci HN, Baş VN (2014) Evaluation of asymmetric dimethylarginine (ADMA) levels in children with growth hormone deficiency. J Clin Res Pediatr Endocrinol 6:22–27

    Article  PubMed Central  PubMed  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  • Pilz S, Meinitzer A, Gaksch M, Grübler M, Verheyen N, Drechsler C, Hartaigh BÓ, Lang F, Alesutan I, Voelkl J, März W, Tomaschitz A (2015) Homoarginine in the renal and cardiovascular systems. Amino Acids. doi:10.1007/s00726-015-1993-2

    Google Scholar 

  • Sanli C, Oguz D, Olgunturk R, Tunaoglu FS, Kula S, Pasaoglu H, Gulbahar O, Cevik A (2012) Elevated homocysteine and asymmetric dimethyl arginine levels in pulmonary hypertension associated with congenital heart disease. Pediatr Cardiol 33:1323–1331

    Article  PubMed  Google Scholar 

  • Siroen MP, Teerlink T, Nijveldt RJ, Prins HA, Richir MC, van Leeuwen PA (2006) The clinical significance of asymmetric dimethylarginine. Annu Rev Nutr 26:203–228

    Article  CAS  PubMed  Google Scholar 

  • Sladowska-Kozłowska J, Litwin M, Niemirska A, Płudowski P, Wierzbicka A, Skorupa E, Wawer ZT, Janas R (2012) Oxidative stress in hypertensive children before and after 1 year of antihypertensive therapy. Pediatr Nephrol 27:1943–1951

    Article  PubMed Central  PubMed  Google Scholar 

  • Tarnow L, Hovind P, Teerlink T, Stehouwer CD, Parving HH (2004) Elevated plasma asymmetric dimethylarginine as a marker of cardiovascular morbidity in early diabetic nephropathy in type 1 diabetes. Diabetes Care 27:765–769

  • Tran CT, Leiper JM, Vallance P (2003) The DDAH/ADMA/NOS pathway. Atheroscler Suppl 4:33–40

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D (2000) Simultaneous derivatization and quantification of the nitric oxide by gas chromatography/mass spectrometry. Anal Chem 72:4064–4072

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D (2008) Determination of asymmetric dimethylarginine in biological fluids: a paradigm for a successful analytical story. Curr Opin Clin Nutr Metab Care 11:592–600

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D (2015) Circulating and excretory nitrite and nitrate: their value as measures of nitric oxide synthesis, bioavailability and activity is inherently limited. Nitric Oxide 45:1–3

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Schubert B, Gutzki FM, Sandmann J, Frölich JC (2003) Quantitative determination of circulating and urinary asymmetric dimethylarginine (ADMA) in humans by gas chromatography-tandem mass spectrometry as methyl ester tri(N-pentafluoropropionyl) derivative. J Chromatogr B 798:87–99

    Article  CAS  Google Scholar 

  • Tsikas D, Thum T, Becker T, Pham VV, Chobanyan K, Mitschke A, Beckmann B, Gutzki FM, Bauersachs J, Stichtenoth DO (2007) Accurate quantification of dimethylamine (DMA) in human urine by gas chromatography-mass spectrometry as pentafluorobenzamide derivative: evaluation of the relationship between DMA and its precursor asymmetric dimethylarginine (ADMA) in health and disease. J Chromatogr B 851:229–239

    Article  CAS  Google Scholar 

  • Tsikas D, Wolf A, Mitschke A, Gutzki FM, Will W, Bader M (2010a) GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays. J Chromatogr B 878:2582–2592

    Article  CAS  Google Scholar 

  • Tsikas D, Schwarz A, Stichtenoth DO (2010b) Simultaneous measurement of [15N]nitrate and [15N]nitrite enrichment and concentration in urine by gas chromatography mass spectrometry as pentafluorobenzyl derivatives. Anal Chem 82:2585–2587

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Niemann J, Flentje M, Schwarz A, Tossios P (2014) N-Acetylcysteine (NAC) inhibits renal nitrite and nitrate reabsorption in healthy subjects and in patients undergoing cardiac surgery: risk of nitric oxide (NO) bioavailability loss by NAC? Int J Cardiol 177:30–33

    Article  PubMed  Google Scholar 

  • Tsikas D, Pham VV, Suchy MT, van de Reeb MA, Huisman MV, Frölich JC, Princen HMG, on behalf of the DALI study (2015) No effects of atorvastatin (10 mg/d or 80 mg/d) on nitric oxide, prostacyclin, thromboxane and oxidative stress in type 2 diabetes mellitus patients of the DALI study. Pharmacol Res 94:1–8

    Article  CAS  PubMed  Google Scholar 

  • Vallance P (2001) Importance of asymmetrical dimethylarginine in cardiovascular risk. Lancet 358:2096–2097

    Article  CAS  PubMed  Google Scholar 

  • Vallance P, Leiper (2004) Cardiovascular biology of the asymmetric dimethylarginine:dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol 24:1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Vicente FB, Miller A, Brooks ER, Price HE, Smith FA (2007) Measurement of arginine derivatives in pediatric patients with chronic kidney disease using high-performance liquid chromatography-tandem mass spectrometry. Clin Chem Lab Med 45:1305–1312

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank A. Mitschke and M. T. Suchy for excellent laboratory assistance and F.-M. Gutzki for performing GC–MS and GC–MS/MS analyses. We are also thankful to the Deutsche Diabetes Gesellschaft for the travel support given to Christina Carmann for the presentation of the study results at the Deutscher Diabetes Kongress 2014 in Berlin.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The study was designed as a prospective cross-sectional study and was approved by the Ethics Committee of the University of Bochum. The study was performed in accordance with the guidelines of the Declaration of Helsinki and of Good Clinical Practice. Written and informed consent was given by parents and children.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lücke.

Additional information

D. Tsikas and T. Lücke are both senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmann, C., Lilienthal, E., Weigt-Usinger, K. et al. The l-arginine/NO pathway, homoarginine, and nitrite-dependent renal carbonic anhydrase activity in young people with type 1 diabetes mellitus. Amino Acids 47, 1865–1874 (2015). https://doi.org/10.1007/s00726-015-2027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2027-9

Keywords

Navigation