Skip to main content
Log in

A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4ʹ-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert R, Smith-Jones P, Stolz B, Simeon C, Knecht H, Bruns C, Pless J (1998) Direct synthesis of [DOTA-DPhe1]-octreotide and [DOTA-DPhe1, Tyr3]-octreotide (SMT487): Two conjugates for systemic delivery of radiotherapeutical nuclides to somatostatin receptor positive tumors in man. Bioorg Med Chem Lett 8:1207–1210

    Article  CAS  PubMed  Google Scholar 

  • Astruc B, Marbach P, Bouterfa H, Denot C, Safari M, Vitaliti A, Sheppard M (2005) Long-acting octreotide and prolonged-release lanreotide forumulation have different pharmacokinetic profiles. J Clin Pharmacol 45:836–844

    Article  CAS  PubMed  Google Scholar 

  • Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ (1982) A very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79

    Article  CAS  PubMed  Google Scholar 

  • Casella IG, Contursi M (2003) Isocratic ion chromatographic determination of underivatized amino acids by electrochemical detection. Anal Chim Acta 478:179–189

    Article  CAS  Google Scholar 

  • Church FC, Swaisgood HE, Catignani GL (1984) Compositional analysis of proteins following hydrolysis by immobilized proteases. J Appl Biochem 6:205–211

    CAS  PubMed  Google Scholar 

  • Dai Z, Wu Z, Jia S, Wu G (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B 964:116–127

    Article  CAS  Google Scholar 

  • Fountoulakis M, Lahm HW (1998) Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A 826:109–134

    Article  CAS  PubMed  Google Scholar 

  • Greenstein JP, Winitz M (1961) Chemistry of amino acids. John Wiley, New York

    Google Scholar 

  • Harder U, Koletzko B, Peissner W (2011) Quantification of 22 plasma amino acids combining derivatization and ion-pair LC–MS/MS. J Chromatogr B 879:495–504

    Article  CAS  Google Scholar 

  • Hsieh HP, Wu YT, Chen ST, Wang KT (1999) Direct solid-phase synthesis of octreotide conjugates: precursors for use as tumor-targeted radiopharmaceuticals. Bioorg Med Chem Lett 7:1797–1803

    Article  CAS  Google Scholar 

  • International Conference of Harmonisation (1996) Harmon-ised tripartite guideline–validation of analytical procedures. Methodology

  • Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2008) Automated GC–MS analysis of free amino acids in biological fluids. J Chromatogr B 870:222–232

    Article  CAS  Google Scholar 

  • Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2009) Advances in amino acid analysis. Anal Bioanal Chem 393:445–452

    Article  CAS  PubMed  Google Scholar 

  • Krause I, Bockhardt A, Neckermann H, Henle T, Klostermeyer H (1995) Simultaneous determination of amino acids and biogenic amines by reversed-phase high-performance liquid chromatography of the dabsyl derivatives. J Chromatogr A 715:67–79

    Article  CAS  Google Scholar 

  • Lin JK, Wang CH (1980) Determination of urinary amino acids by liquid chromatography with “dabsyl chloride”. Clin Chem 26:579–583

    CAS  PubMed  Google Scholar 

  • Ludlam WH, Anthony L (2011) Safety review: dose optimization of somatostatin analogs in patients with acromegaly and neuroendocrine tumors. Adv Ther 28:825–841

    Article  CAS  PubMed  Google Scholar 

  • Molnár-Perl I (1997) Tryptophan analysis in peptides and proteins, mainly by liquid chromatography. J Chromatogr A 763:1–10

    Article  Google Scholar 

  • Molnár-Perl I (2003) Quantitation of amino acids and amines in the same matrix by high-performance liquid chromatography, either simultaneously or separately. J Chromatogr A 987:291–309

    Article  PubMed  Google Scholar 

  • Moore S, Stein WH (1951) Chromatography of amino acids on sulfonated polystyrene resins. J Biol Chem 192:663–681

    CAS  PubMed  Google Scholar 

  • Pinho O, Ferreira IM, Mendes E, Oliveira BM, Ferreira M (2001) Effect of temperature on evolution of free amino acid and biogenic amine contents during storage of Azeitão cheese. Food Chem 75:287–291

    Article  CAS  Google Scholar 

  • Qu J, Wang Y, Luo G, Wu Z, Yang C (2002) Validated quantitation of underivatized amino acids in human blood samples by volatile ion-pair reversed-phase liquid chromatography coupled to isotope dilution tandem mass spectrometry. Anal Chem 74:2034–2040

    Article  CAS  PubMed  Google Scholar 

  • Reason AJ (2003) Validation of amino acid analysis methods. In: Smith BJ (ed) Protein sequencing protocols, Methods in molecular biology, vol 211. Humana Press, Totowa

    Google Scholar 

  • Reichlin S (1983a) Somatostatin I. New Engl J Med 309:1495–1501

    Article  CAS  PubMed  Google Scholar 

  • Reichlin S (1983b) Somatostatin II. New Engl J Med 309:1556–1563

    Article  CAS  Google Scholar 

  • Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Mäcke HR (2000) Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282

    Article  CAS  PubMed  Google Scholar 

  • Rutherfurd SM, Gilani GS (2009) Amino acid analysis. Current protocols in protein science, Wiley Interscience

    Book  Google Scholar 

  • Schneider HJ (1989) Amino acid analysis using DABS-CL. Chromatographia 28:45–48

    Article  CAS  Google Scholar 

  • Sethuraman R, Lee TL, Tachibana S (2004) Simple quantitative HPLC method for measuring physiologic amino acids in cerebrospinal fluid without pretreatment. Clin Chem 50:665–669

    Article  CAS  PubMed  Google Scholar 

  • Silvestre MPC (1997) Review of methods for the analysis of protein hydrolysates. Food Chem 60:263–271

    Article  CAS  Google Scholar 

  • Veledo MT, de Frutos M, Diez-Masa JC (2005) Amino acids determination using capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection. J Chromatogr A 1079:335–343

    Article  CAS  PubMed  Google Scholar 

  • Woltering EA, Mamikunian VAPM, Zietz S, Krutzik SR, Go VL, Vinik AL, Vinik E, Dorisio TMO, Mamikunian G (2005) Effect of octreotide LAR dose and weight on octreotide blood levels in patients with neuroendocrine tumors. Pancreas 31:392–400

    Article  CAS  PubMed  Google Scholar 

  • Woltering EA, Salvo VA, O’Dorisio TM, Lyons J III, Li G, Zhou Y (2008) Clinical value of monitoring plasma octreotide levels during chronic octreotide long-acting repeatable therapy in carcinoid patients. Pancreas 37:94–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang W, Zhang Z, Deng W (2003) A capillary electrophoresis detection scheme for underivatized amino acids based on luminol–BrO chemiluminescence system. Talanta 59:951–958

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhao T, Cheng T, Liu X, Zhang H (2012) Rapid resolution liquid chromatography (RRLC) analysis of amino acids using pre-column derivatization. J Chromatogr B 906:91–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Tofigh Daru Co. for financial and technical support of this project. Authors are also grateful to Ms. Hedie Ghaffari for editing the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Akhlaghi.

Additional information

Handling Editor: D. Tsikas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhlaghi, Y., Ghaffari, S., Attar, H. et al. A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC. Amino Acids 47, 2255–2263 (2015). https://doi.org/10.1007/s00726-015-1999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1999-9

Keywords

Navigation