Skip to main content
Log in

Radiolabeled new somatostatin analogs conjugated to DOMA chelator used as targeted tumor imaging agent: synthesis and radiobiological evaluation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Several receptor-specific radiopeptides have been developed and effective in the diagnosis of malignant diseases. Among them, somatostatin receptor (SSTR) scintigraphy with 111In-DTPA-octreotide has become a tumor diagnostic radiopharmaceutical in nuclear medicine. However, it suffers some drawbacks concerning the imaging properties and elevated radiation burden of 111In. Here, we report the synthesis of radiolabeled two new octapeptides with improved uptake in SSTR2-positive tumors in comparison with 99mTc-HYNIC-Tyr3-octreotide (HYNIC-TOC). Octapeptides were synthesized in high yield by Fmoc solid-phase synthesis and coupling the macrocyclic chelator DOMA(1,4,7-Tri-Boc-10-(carboxymethyl)-1,4,7,10-tetraazocyclododecane-1-yl-monoacetic acid) to these peptides for 99mTc labeling. New peptides DOMA-Asn3-octreotate(DOMA-AATE) and DOMA-Pro3-octreotate(DOMA-PATE) were purified, characterized by RP-HPLC, MALDI-mass, 1H-NMR, 13C-NMR. Labeling was performed by SnCl2 method to get products with excellent radiochemical purity (97 %). Radiopeptides were found to be substantially stable under physiological condition for 24 h. Internalization and receptor-binding studies were determined in somatostatin receptor-expressing C6-glioma cell line and rat brain cortex membrane and the results compared with HYNIC-TOC as standard. The IC50 values of 99mTc-DOMA-AATE(1.10 ± 0.48 nM) and 99mTc-DOMA-PATE(1.76 ± 0.06 nM) showed high affinity binding for SSTR2 receptor and they internalized rapidly in C6 cells. Biodistribution and imaging studies were performed in C6 tumor-bearing rat under gamma camera showing significant uptake in kidney, urine and C6 tumor. Radiopeptides exhibited fast blood clearance and rapid elimination through the urinary systems. However, 99mTc-DOMA-AATE exhibited the highest tumor to muscle and tumor to blood uptake ratios among three. These favorable characteristics validate 99mTc-DOMA-AATE as a more promising 99mTc-radiotracer than 99mTc-DOMA-PATE, 99mTc-HYNIC-TOC for SSTR2-positive tumor scintigraphy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arnold R, Simon B, Wied M (2000) Treatment of neuroendocrine GEP tumors with somatostatin analogs: a review. Digestion 62:84–91

    Article  CAS  PubMed  Google Scholar 

  • Babich JW, Fischman AJ (1995) Effect of Co-ligand on the biodistribution of 99mTc-labeled hydrazine nicotinic acid derivatized chemotactic peptides. Nucl Med Biol 22:25–30

    Article  CAS  PubMed  Google Scholar 

  • Bakker WH, Albert R, Bruns C, Breeman WAP, Hofland LJ, Marbach P, Pless J, Pralet D, Stolz B, Koper JW, Lamberts SWJ, Visser TJ, Krenning EP (1991) In-111-DTPA-D-Phe1-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors-synthesis, radiolabeling and invitro validation. Life Sci 49(22):1583–1591

    Article  CAS  PubMed  Google Scholar 

  • Barbieri F, Florio T (2011) Characterization of the differential efficacy of somatostatin receptor agonists in the inhibition of the growth of experimental gliomas and identification of the intracellular mechanisms involved. Eur J Clin Med Oncol 3:46–53

    CAS  Google Scholar 

  • Behera A, De K, Chandra S, Chattopadhyay S, Misra M (2011) Synthesis, radiolabelling and biodistribution of HYNIC-Tyr3 octreotide: a somatostatin receptor positive tumour imaging agent. J Radioanal Nucl Chem 290(1):123–129

    Article  CAS  Google Scholar 

  • De Jong M, Breeman WAP, Bernard BF, Hofland LJ, Srinivasan TJ, Schmidt M, Behe M, Maecke H, Krenning PE (1998) Preclinical comparison of [DTPA0] octreotide, [DTPA0Tyr3] octreotide and [DOTA0Tyr3] octreotide as carriers for somatostatin receptor targeted scintigraphy and radionuclide therapy. Int J Cancer 75:406–411

    Article  PubMed  Google Scholar 

  • De K, Chadra S, Sarkar B, Ganguly S, Misra M (2010) Synthesis and biological evaluation of 99mTc-DHPM complex : a potential new radiopharmaceutical for lung imaging studies. J Radioanal Nucl Chem 283:621–628

    Article  CAS  Google Scholar 

  • De K, Bhowmik A, Behera A, Banerjee I, Ghosh MK, Misra M (2012) Synthesis, radiolabeling and preclinical evaluation of a new octreotide analog for somatostatin receptor-positive tumor scintigraphy. J Pept Sci 18:720–730

    Article  CAS  PubMed  Google Scholar 

  • Decristoforo C, Mather JS (1999) Preparation, 99mTc-labeling, and in vitro characterization of HYNIC and N3S modified RC-160 and [Tyr3] octreotide. Bioconj Chem 19:431–438

    Article  Google Scholar 

  • Decristoforo C, Melendez-Alafort L, Sosabowski JK, Mather SJ (2000) 99mTc-HYNIC-[Tyr3]-octreotide for imaging somatostatin-receptor-positive tumors: preclinical evaluation and comparison with 111In-octreotide. J Nucl Med 41(6):1114–1119

    CAS  PubMed  Google Scholar 

  • Fischman AJ, Babich JW, Strauss HW (1993) A ticket to ride : peptide radiopharmaceuticals. J Nucl Med 34(12):2253–2263

    CAS  PubMed  Google Scholar 

  • Gandomkar M, Najafi R, Shafiei M, Mazidi M, Ebrahimi SES (2007) Preclinical evaluation of Tc-99m/EDDA/tricine/HYNIC0,1-Nal(3), Thr(8)-octreotide as a new analogue in the detection of somatostatin-receptor-positive tumors. Nucl Med Biol 34(6):651–657

    Article  CAS  PubMed  Google Scholar 

  • Graham MM, Menda Y (2011) Radiopeptide imaging and therapy in the United States. J Nucl Med 52:56S–63S

    Article  CAS  PubMed  Google Scholar 

  • Guggenberg EV, Penz B, Kemmler G, Virgolini I, Decristoforo C (2006) Comparison of different methods for radiochemical purity testing of [Tc-99m-EDDA-HYNIC-D-Phe(1), Tyr(3)]-octreotide. Appl Radiat Isot 64:194–200

    Article  Google Scholar 

  • Hanaoka H, Tominaga H, Yamada K, Paudyal P, Iida Y, Watanabe S, Paudyal B, Higuchi T, Oriuchi N, Endo K (2009) Evaluation of 64CU-labeled DOTA-d-Phe1-Tyr3-octreotide(64Cu-DOTA-TOC) for imaging somatostatin receptor-expressing tumors. Ann Nucl Med 23:559–567

    Article  CAS  PubMed  Google Scholar 

  • Koenig JA, Edwardson JM, Humphrey PPA (1997) Somatostatin receptors in Neuro2A neuroblastoma cells: operational characteristics. Br J Pharmacol 120(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Kopecky M, Semecky V, Trejtnar F, Laznicek M, Laznickova A, Nachtigal P (2004) Analysis of accumulation of 99mTc-octreotide and 99mTc-EDDA/HYNIC-Tyr3-octreotide in the rat kidneys. Nucl Med Biol 31:231–239

    Article  CAS  PubMed  Google Scholar 

  • Kwekkeboom DJ, Krenning EP (2002) Somatostatin receptor imaging. Semin Nucl Med 32:84–91

    Article  PubMed  Google Scholar 

  • Lamszus K, Meverhof W, Westpha M (1997) Somatostatin and somatostatin receptors in the diagnosis and treatment of gliomas. J Neuro Oncol 35:353–364

    Article  CAS  Google Scholar 

  • Laznickova A, Laznicek M, Trejtnar F, Melicharova L, Suzuki KH, Akizawa H, Arano Y, Yokoyama A (2002) Distribution and elimination characteristics of 111In-DTPA-d-Phe1-octreotide and 111In-DTPA-L-Phe1-octreotide in rats. Eur J Drug Metab Pharmacokin 27:37–43

    Article  CAS  Google Scholar 

  • Lee TW, Chang SR, Chen ST, Tsai ZT (1998) Convenient solid-phase synthesis of tyr(3)-octreotide. Appl Radiat Isot 49(12):1581–1586

    Article  CAS  Google Scholar 

  • Li WP, Lewis JS, Kim J, Bugaj JE, Johnson MA, Erion JL, Anderson CJ (2002) DOTA-d-Tyr1-octreotate: a somatostatin analogue for labeling with metal and halogen radionuclides for cancer imaging and therapy. Bioconj Chem 13:721–728

    Article  CAS  Google Scholar 

  • Liu S, Edwards DS (1999) Tc-99m-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99(9):2235–2268

    Article  CAS  PubMed  Google Scholar 

  • Maina T, Nock BA, Cordopatis P, Bernard BF, Breeman WAP, van Gameren A, van den Berg R, Reubi JC, Krenning EP, de Jong M (2006) Tc-99m demotate 2 in the detection of sst(2)-positive tumours: a preclinical comparison with In-111 DOTA-tate. Eur J Nucl Med Mol Imaging 33(7):831–840

    Article  PubMed  Google Scholar 

  • Nikolopoulou A, Nock BA, Maina T (2006) Tc-99m targeting of Sst(2)-expressing tumors by tetraamine-octreotide: first results in CA20948 cells and rat models. Anticancer Res 26(1A):363–366

    CAS  PubMed  Google Scholar 

  • Okarvi SM (2004) Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev 24:357–397

    Article  CAS  PubMed  Google Scholar 

  • Panwar P, Iznaga-Escobar N, Mishra P, Srivastava V, Sharma RK, Chandra R, Mishra AK (2005) Radiolabeling and biological evaluation of DOTA-Ph-Al derivative conjugated to anti-egfr antibody ior egf/r3 for targeted tumor imaging and therapy. Cancer Biol Ther 4:854–860

    Article  CAS  Google Scholar 

  • Reubi JC, Waser B, Schaer JC, Laissue JA (2001) Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 28(7):836–846

    Article  CAS  PubMed  Google Scholar 

  • Storch D, Behe M, Walter MA, Chen JH, Powell P, Mikolajczak R, Macke HR (2005) Evaluation of Tc-99m/EDDA/HYNIC0 octreotide derivatives compared with In-111-DOTA(0), Tyr(3), Thr(8) octreotide and In-111-DTPA(0) octreotide: does tumor or pancreas uptake correlate with the rate of internalization? J Nucl Med 46(9):1561–1569

    CAS  PubMed  Google Scholar 

  • Susini C, Buscail L (2006) Rational for the use of somatostatin analogs as antitumor agents. Ann Oncol 17:1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan G, Friedman HS, Affleck DJ, Schottelius M, Wester HJ, Zalutsky MR (2003) Specific and high-level targeting of radiolabeled octreotide analogues to human medulloblastoma xenografts. Clin Cancer Res 9(5):1868–1876

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support in the form of Research Associateship (Dr. Kakali De) from the Indian Council of Medical Research (ICMR), New Delhi, India, is acknowledged. The authors also gratefully acknowledge Prof. Siddhartha Roy, Director, CSIR-Indian Institute of Chemical Biology, Kolkata, India for providing infrastructure facilities. Authors sincerely acknowledge Dr. Santanu Ganguly and Mr. Bhart Sarkar of Regional Radiation Medicine Centre and Variable Energy Cyclotron Centre, Thakurpukur Cancer Centre and Welfare Home Campus, Kolkata, India, for their kind help for taking the image of tumor-bearing rats.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakali De.

Additional information

Handling Editor: Michael Platten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, K., Banerjee, I. & Misra, M. Radiolabeled new somatostatin analogs conjugated to DOMA chelator used as targeted tumor imaging agent: synthesis and radiobiological evaluation. Amino Acids 47, 1135–1153 (2015). https://doi.org/10.1007/s00726-015-1942-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1942-0

Keywords

Navigation