Skip to main content
Log in

Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

β-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, β-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the β-hairpin motif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Aad:

(S)-Aminoadipate

Agb:

(S)-2-Amino-4-guanidinobutyric acid

Agh:

(S)-2-Amino-6-guanidinohexanoic acid

Agp:

(S)-2-Amino-3-guanidinopropionic acid

Ala:

Alanine

Arg:

Arginine

Asp:

Aspartate

DQF-COSY:

Double-quantum filtered-correlated spectroscopy

Fmoc:

N α-Fluorenylmethyloxycarbonyl

Glu:

Glutamate

Lys:

Lysine

MALDI-TOF:

Matrix-assisted laser desorption ionization time-of-flight

NMR:

Nuclear magnetic resonance spectroscopy

NOESY:

Nuclear overhauser effect spectroscopy

Orn:

Ornithine

ROESY:

Rotating-frame nuclear Overhauser effect spectroscopy

TOCSY:

Total correlation spectroscopy

References

  • Arakawa T, Tsumoto K (2003) The effects of arginine on refolding of aggregated proteins: Not facilitate refolding, but suppress aggregation. Biochem Biophys Res Commun 304:148–152

    Article  CAS  PubMed  Google Scholar 

  • Argos P (1988) An investigation of protein subunit and domain interfaces. Protein Eng 2:101–113

    Article  CAS  PubMed  Google Scholar 

  • Arora D, Khanna N (1996) Method for increasing the yield of properly folded recombinant human gamma interferon from inclusion bodies. J Biotechnol 52:127–133

    Article  CAS  PubMed  Google Scholar 

  • Atherton E, Fox H, Harkiss D, Logan CJ, Sheppard RC, Williams BJ (1978) A mild procedure for solid-phase peptide-synthesis—Use of the fluorenylmethoxycarbonyl amino acids. J Chem Soc Chem Commun 13:537–539. doi:10.1039/C39780000537

    Article  Google Scholar 

  • Aue WP, Bartholdi E, Ernst RR (1976) 2-Dimensional spectroscopy—application to nuclear magnetic-resonance. J Chem Phys 64(5):2229–2246. doi:10.1063/1.432450

    Article  CAS  Google Scholar 

  • Augustyns K, Kraas W, Jung G (1998) Investigation on the stability of the Dde protecting group used in peptide synthesis: migration to an unprotected lysine. J Pept Res 51:127–133

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Englander SW (1994) Hydrogen bond strength and β-sheet propensities: the role of a side chain blocking effect. Proteins 18(3):262–266. doi:10.1002/prot.340180307

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL, Rose GD (1999a) Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem Sci 24(1):26–33. doi:10.1016/S0968-0004(98)01346-2

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL, Rose GD (1999b) Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem Sci 24(2):77–83. doi:10.1016/S0968-0004(98)01345-0

    Article  CAS  PubMed  Google Scholar 

  • Bartzokis G, Lu PH, Mintz J (2007) Human brain myelination and amyloid β deposition in Alzheimer’s disease. Alzheimers Dement 3(2):122–125. doi:10.1016/j.jalz.2007.01.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bax A, Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65(2):355–360. doi:10.1016/0022-2364(85)90018-6

    CAS  Google Scholar 

  • Blasie CA, Berg JM (1997) Electrostatic interactions across a β-sheet. Biochemistry 36(20):6218–6222. doi:10.1021/bi962805i

    Article  CAS  PubMed  Google Scholar 

  • Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bothner-By AA, Stephens RL, Lee J-M, Warren CD, Jeanloz RW (1984) Structure determination of a tetrasaccharide—transient nuclear overhauser effects in the rotating frame. J Am Chem Soc 106(3):811–813. doi:10.1021/Ja00315a069

    Article  CAS  Google Scholar 

  • Chakrabartty A, Kortemme T, Baldwin RL (1994) Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci 3(5):843–852. doi:10.1002/pro.5560030514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng RP, Girinath P, Ahmad R (2007) Effect of lysine side chain length on intra-helical glutamate-lysine ion pairing interactions. Biochemistry 46(37):10528–10537. doi:10.1021/bi700701z

    Article  CAS  PubMed  Google Scholar 

  • Cheng RP, Wang W-R, Girinath P, Yang P-A, Ahmad R, Li J-H, Hart P, Kokona B, Fairman R, Kilpatrick C, Argiros A (2012a) Effect of glutamate side chain length on intrahelical glutamate-lysine ion pairing interactions. Biochemistry 51(36):7157–7172. doi:10.1021/bi300655z

    Article  CAS  PubMed  Google Scholar 

  • Cheng RP, Weng Y-J, Wang W-R, Koyack MJ, Suzuki Y, Wu C-H, Yang P-A, Hsu H-C, Kuo H-T, Girinath P, Fang C-J (2012b) Helix formation and capping energetics of arginine analogs with varying side chain length. Amino Acids 43(1):195–206. doi:10.1007/s00726-011-1064-2

    Article  CAS  PubMed  Google Scholar 

  • Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 13(2):211–222

    Article  CAS  PubMed  Google Scholar 

  • Ciani B, Jourdan M, Searle MS (2003) Stabilization of β-hairpin peptides by salt bridges: role of preorganization in the energetic contribution of weak interactions. J Am Chem Soc 125(30):9038–9047. doi:10.1021/ja030074l

    Article  CAS  PubMed  Google Scholar 

  • Cockroft SL, Hunter CA (2007) Chemical double-mutant cycles: dissecting non-covalent interactions. Chem Soc Rev 36(2):172–188. doi:10.1039/B603842p

    Article  CAS  PubMed  Google Scholar 

  • Cootes AP, Curmi PMG, Cunningham R, Donnelly C, Torda AE (1998) The dependence of amino acid pair correlations on structural environment. Proteins 32:175–189

    Article  CAS  PubMed  Google Scholar 

  • Dalgarno DC, Levine BA, Williams RJ (1983) Structural information from NMR secondary chemical shifts of peptide α C-H protons in proteins. Biosci Rep 3(5):443–452

    Article  CAS  PubMed  Google Scholar 

  • de Alba E, Blanco FJ, Jimenez MA, Rico M, Nieto JL (1995) Interactions responsible for the pH dependence of the β-hairpin conformational population formed by a designed linear peptide. Eur J Biochem 233(1):283–292

    Article  CAS  PubMed  Google Scholar 

  • de Bernardez Clark E (1998) Refolding of recombinant proteins. Curr Opin Biotechnol 9:157–163

    Article  Google Scholar 

  • Doig AJ, Baldwin RL (1995) N- and C-capping preferences for all 20 amino acids in α-helical peptides. Protein Sci 4(7):1325–1336. doi:10.1002/pro.5560040708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feichtinger K, Sings HL, Baker TJ, Matthews K, Goodman M (1998a) Triurethane-protected guanidines and triflyldiurethane-protected guanidines: new reagents for guanidinylation reactions. J Org Chem 63(23):8432–8439. doi:10.1021/Jo9814344

    Article  CAS  Google Scholar 

  • Feichtinger K, Zapf C, Sings HL, Goodman M (1998b) Diprotected triflylguanidines: a new class of guanidinylation reagents. J Org Chem 63(12):3804–3805. doi:10.1021/Jo980425s

    Article  CAS  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35(3):161–214

    Article  CAS  PubMed  Google Scholar 

  • Griep S, Hobohm U (2010) PDBselect 1992–2009 and PDBfilter-select. Nucleic Acids Res 38:D318–D319. doi:10.1093/nar/gkp786 (Database issue)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29(3):303–316. doi:10.1210/er.2007-0037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10):383–388

    Article  CAS  PubMed  Google Scholar 

  • Hobohm U, Sander C (1994) Enlarged representative set of protein structures. Protein Sci 3(3):522–524. doi:10.1002/pro.5560030317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Höppener JW, Ahrén B, Lips CJ (2000) Islet amyloid and type 2 diabetes mellitus. N Engl J Med 343(6):411–419. doi:10.1056/NEJM200008103430607

    Article  PubMed  Google Scholar 

  • Horovitz A (1996) Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold Des 1(6):R121–R126. doi:10.1016/S1359-0278(96)00056-9

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Buyong M, Wolfson H, Nussinov R (2000) Conservation of polar residues as hot spots at protein interfaces. Proteins Struct Funct Genet 39:331–342

    Article  CAS  PubMed  Google Scholar 

  • Hughes RM, Benshoff ML, Waters ML (2007) Effects of chain length and N-methylation on a cation–π interaction in a β-hairpin peptide. Chemistry 13(20):5753–5764. doi:10.1002/chem.200601753

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson EG, Sessions RB, Thornton JM, Woolfson DN (1998) Determinants of strand register in antiparallel β-sheets of proteins. Protein Sci 7(11):2287–2300. doi:10.1002/pro.5560071106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM (2008) Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol Med 14(7–8):451–464. doi:10.2119/2007-00100.Irvine

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ito L, Kobayashi T, Shiraki K, Yamaguchi H (2008) Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A. J Synchrotron Radiat 15:316–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janin J, Miller S, Chothia C (1988) Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol 204:155–164

    Article  CAS  PubMed  Google Scholar 

  • Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by 2-dimensional NMR-spectroscopy. J Chem Phys 71(11):4546–4553. doi:10.1063/1.438208

    Article  CAS  Google Scholar 

  • Jones S, Thornton JM (1995) Protein–protein interactions: a review of protein dimer structures. Prog Biophys Mol Biol 63:31–65

    Article  CAS  PubMed  Google Scholar 

  • Joosten RP, Beek TAHT, Krieger E, Hekkelman ML, Hooft RWW, Schneider R, Sander C, Vriend G (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res 39:D411–D419. doi:10.1093/Nar/Gkq1105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure—pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637. doi:10.1002/Bip.360221211

    Article  CAS  PubMed  Google Scholar 

  • Kiehna SE, Waters ML (2003) Sequence dependence of β-hairpin structure: comparison of a salt bridge and an aromatic interaction. Protein Sci 12(12):2657–2667. doi:10.1110/ps.03215403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim CA, Berg JM (1993) Thermodynamic β-sheet propensities measured using a zinc-finger host peptide. Nature 362(6417):267–270. doi:10.1038/362267a0

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Prestegard JH (1989) Measurement of vicinal couplings from cross peaks in COSY spectra. J Magn Reson 84(1):9–13. doi:10.1016/0022-2364(89)90003-6

    CAS  Google Scholar 

  • Kim E, Paliwal S, Wilcox CS (1998) Measurements of molecular electrostatic field effects in edge-to-face aromatic interactions and CH–π interactions with implications for protein folding and molecular recognition. J Am Chem Soc 120(43):11192–11193

    Article  CAS  Google Scholar 

  • Kitamoto T, Tateishi J, Tashima T, Takeshita I, Barry RA, DeArmond SJ, Prusiner SB (1986) Amyloid plaques in Creutzfeldt-Jakob disease stain with prion protein antibodies. Ann Neurol 20(2):204–208. doi:10.1002/ana.410200205

    Article  CAS  PubMed  Google Scholar 

  • Kuo H-T, Fang C-J, Tsai H-Y, Yang M-F, Chang H-C, Liu S-L, Kuo L-H, Wang W-R, Yang P-A, Huang S-J, Huang S-L, Cheng RP (2013a) Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate-containing residues and lysine analogues in a β-hairpin. Biochemistry 52(51):9212–9222. doi:10.1021/bi400974x

    Article  CAS  PubMed  Google Scholar 

  • Kuo L-H, Li J-H, Kuo H-T, Hung C-Y, Tsai H-Y, Chiu W-C, Wu C-H, Wang W-R, Yang P-A, Yao Y-C, Wong T-W, Huang S-J, Huang S-L, Cheng RP (2013b) Effect of charged amino acid side chain length at non-hydrogen bonded strand positions on β-hairpin stability. Biochemistry 52:7785–7797

    Article  CAS  PubMed  Google Scholar 

  • Kuo H-T, Yang P-A, Wang W-R, Hsu H-C, Wu C-H, Ting Y-T, Weng M-H, Kuo L-H, Cheng RP (2014) Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids. Amino Acids 46(8):1867–1883. doi:10.1007/s00726-014-1737-8

    Article  CAS  PubMed  Google Scholar 

  • Laughrey ZR, Kiehna SE, Riemen AJ, Waters ML (2008) Carbohydrate-π Interactions: what are they worth? J Am Chem Soc 130(44):14625–14633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mastaglia FL, Johnsen RD, Byrnes ML, Kakulas BA (2003) Prevalence of amyloid-β deposition in the cerebral cortex in Parkinson’s disease. Mov Disord 18(1):81–86. doi:10.1002/mds.10295

    Article  PubMed  Google Scholar 

  • Merkel JS, Sturtevant JM, Regan L (1999) Sidechain interactions in parallel β sheets: the energetics of cross-strand pairings. Structure 7(11):1333–1343

    Article  CAS  PubMed  Google Scholar 

  • Minor DL, Kim PS (1994) Measurement of the β-sheet-forming propensities of amino acids. Nature 367(6464):660–663. doi:10.1038/367660a0

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325

    Article  CAS  PubMed  Google Scholar 

  • Munoz V, Serrano L (1994) Intrinsic secondary structure propensities of the amino acids, using statistical φ–ψ matrices: comparison with experimental scales. Proteins 20(4):301–311. doi:10.1002/prot.340200403

    Article  CAS  PubMed  Google Scholar 

  • Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541(1):163–166

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan S, York EJ, Stewart JM, Baldwin RL (1996) Helix propensities of basic amino acids increase with the length of the side-chain. J Mol Biol 257(3):726–734. doi:10.1006/jmbi.1996.0197

    Article  CAS  PubMed  Google Scholar 

  • Paliwal S, Geib S, Wilcox CS (1994) Chemistry of synthetic receptors and functional-group arrays.24. Molecular torsion balance for weak molecular recognition forces—effects of tilted-T edge-to-face aromatic interactions on conformational selection and solid-state structure. J Am Chem Soc 116(10):4497–4498

    Article  CAS  Google Scholar 

  • Ramirez-Alvarado M, Blanco FJ, Serrano L (1996) De novo design and structural analysis of a model β-hairpin peptide system. Nat Struct Biol 3(7):604–612

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Alvarado M, Kortemme T, Blanco FJ, Serrano L (1999) β-Hairpin and β-sheet formation in designed linear peptides. Bioorg Med Chem 7(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Alvarado M, Blanco FJ, Serrano L (2001) Elongation of the BH8 β-hairpin peptide: electrostatic interactions in β-hairpin formation and stability. Protein Sci 10(7):1381–1392. doi:10.1110/Ps.52901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rose GD, Gierasch LM, Smith JA (1985) Turns in peptides and proteins. Adv Protein Chem 37:1–109

    Article  CAS  PubMed  Google Scholar 

  • Russell SJ, Cochran AG (2000) Designing stable β-hairpins: energetic contributions from cross-strand residues. J Am Chem Soc 122(50):12600–12601

    Article  CAS  Google Scholar 

  • Russell SJ, Blandl T, Skelton NJ, Cochran AG (2003) Stability of cyclic β-hairpins: asymmetric contributions from side chains of a hydrogen-bonded cross-strand residue pair. J Am Chem Soc 125(2):388–395. doi:10.1021/Ja028075i

    Article  CAS  PubMed  Google Scholar 

  • Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90(3):549–558

    Article  CAS  PubMed  Google Scholar 

  • Searle MS, Griffiths-Jones SR, Skinner-Smith H (1999) Energetics of weak interactions in a β-hairpin peptide: electrostatic and hydrophobic contributions to stability from lysine salt bridges. J Am Chem Soc 121(50):11615–11620

    Article  CAS  Google Scholar 

  • Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99:303–310

    Article  CAS  PubMed  Google Scholar 

  • Smith CK, Regan L (1995) Guidelines for protein design: the energetics of β sheet side chain interactions. Science 270(5238):980–982

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Scholtz JM (1998) Energetics of polar side-chain interactions in helical peptides: salt effects on ion pairs and hydrogen bonds. Biochemistry 37(1):33–40. doi:10.1021/bi972026h

    Article  CAS  PubMed  Google Scholar 

  • Smith CK, Withka JM, Regan L (1994) A thermodynamic scale for the β-sheet forming tendencies of the amino acids. Biochemistry 33(18):5510–5517

    Article  CAS  PubMed  Google Scholar 

  • Stanger HE, Gellman SH (1998) Rules for antiparallel β-sheet design: d-Pro-Gly is superior to L-Asn-Gly for β-hairpin nucleation. J Am Chem Soc 120(17):4236–4237

    Article  CAS  Google Scholar 

  • Street AG, Mayo SL (1999) Intrinsic β-sheet propensities result from van der Waals interactions between side chains and the local backbone. Proc Natl Acad Sci USA 96(16):9074–9076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sueki M, Lee S, Powers SP, Denton JB, Konishi Y, Scheraga HA (1984) Helix coil stability constants for the naturally-occurring amino-acids in water. 22. Histidine parameters from random poly[(hydroxybutyl)glutamine-co-l-histidine]. Macromolecules 17(2):148–155. doi:10.1021/Ma00132a006

    Article  CAS  Google Scholar 

  • Syud FA, Espinosa JF, Gellman SH (1999) NMR-based quantification of β-sheet populations in aqueous solution through use of reference peptides for the folded and unfolded states. J Am Chem Soc 121(49):11577–11578

    Article  CAS  Google Scholar 

  • Syud FA, Stanger HE, Gellman SH (2001) Interstrand side chain-side chain interactions in a designed β-hairpin: significance of both lateral and diagonal pairings. J Am Chem Soc 123(36):8667–8677

    Article  CAS  PubMed  Google Scholar 

  • Tatko CD, Waters ML (2002) Selective aromatic interactions in β-hairpin peptides. J Am Chem Soc 124(32):9372–9373

    Article  CAS  PubMed  Google Scholar 

  • Tatko CD, Waters ML (2003) The geometry and efficacy of cation–π interactions in a diagonal position of a designed β-hairpin. Protein Sci 12(11):2443–2452. doi:10.1110/ps.03284003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tatko CD, Waters ML (2004) Comparison of C-H…π and hydrophobic interactions in a β-hairpin peptide: impact on stability and specificity. J Am Chem Soc 126(7):2028–2034. doi:10.1021/Ja038258n

    Article  CAS  PubMed  Google Scholar 

  • Truant R, Atwal RS, Desmond C, Munsie L, Tran T (2008) Huntington’s disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J 275(17):4252–4262. doi:10.1111/j.1742-4658.2008.06561.x

    Article  CAS  PubMed  Google Scholar 

  • Tsai C-J, Lin SL, Wolfson HJ, Nussinov R (1997) Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci 6:53–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsumoto K, Umetsu M, Kumagai I, Ejima D, Philo JS, Arakawa T (2004) Role of arginine in protein refolding, solubilization, and purification. Biotechnol Progr 20:1301–1308

    Article  CAS  Google Scholar 

  • Umetsu M, Tsumoto K, Hara M, Ashish K, Goda S, Adschiri T, Kumagai I (2003) How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system. Spectroscopic evidence for highly efficient refolding of a single-chain Fv fragment. J Biol Chem 278:8979–8987

    Article  CAS  PubMed  Google Scholar 

  • Volkmer-Engert R, Landgraf C, Schneider-Mergener J (1998) Charcoal surface-assisted catalysis of intramolecular disulfide bond formation in peptides. J Pept Res 51(5):365–369

    Article  CAS  PubMed  Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–13008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wender PA, Galliber WC, Goun EA, Jones LR, Pillow TH (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Del Chem 60:452–472

    Article  CAS  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222(2):311–333. doi:10.1016/0022-2836(91)90214-Q

    Article  CAS  PubMed  Google Scholar 

  • Wouters MA, Curmi PMG (1995) An analysis of side chain interactions and pair correlations within antiparallel β-sheets: the differences between backbone hydrogen-bonded and non-hydrogen-bonded residue pairs. Proteins 22(2):119–131. doi:10.1002/Prot.340220205

    Article  CAS  PubMed  Google Scholar 

  • Wu C-H, Chen Y-P, Mou C-Y, Cheng RP (2013) Altering the Tat-derived peptide bioactivity landscape by changing the arginine side chain length. Amino Acids 44(2):473–480. doi:10.1007/S00726-012-1357-0

    Article  CAS  PubMed  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Yao J, Dyson HJ, Wright PE (1997) Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Lett 419(2–3):285–289. doi:10.1016/S0014-5793(97)01474-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Taiwan University (R.P.C., NTU-ERP-103R891302) and the Ministry of Science and Technology in Taiwan (former National Science Council; S. J. H., 100-2731-M-002-002-MY2; R.P.C., 99-2113-M-002-002-MY2, 101-2113-M-002-006-MY2, 103-2113-M-002-018-MY3). The authors would like to thank the Computer and Information Networking Center at National Taiwan University for the support of the high-performance computing facilities.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Cheng.

Additional information

Handling Editor: P. Kursula.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, HT., Liu, SL., Chiu, WC. et al. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin. Amino Acids 47, 885–898 (2015). https://doi.org/10.1007/s00726-015-1916-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1916-2

Keywords

Navigation