Skip to main content
Log in

Time-Domain NMR Techniques in Cellulose Structure Analysis

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The role of cellulose in various applications is remarkably going up in recent decades as it is a renewable material for wide areas of applications that can be delivered in huge quantities. This drives permanently growing interest to development of sensors for processing industry, that can give fast and reliable information about physicochemical structure of cellulosic materials. In this framework, Time-Domain NMR with its capability to be miniaturized may become very attractive to measure such structural parameters as crystallinity, domain sizes, and sorption properties. This contribution is aimed to summarize existing NMR relaxometric methods and update them with the techniques of signal processing and pulse sequences like Magic Sandwich Echo or multiple quantum transitions, that are well established for synthetic polymers, but still have not been extensively used for polysaccharides. Here, we also demonstrate our own results of cellulose study trying to contribute to the promotion of Time-Domain NMR applicability to biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yu.B. Grunin, LYu. Grunin, VYu. Schiraya, M.S. Ivanova, D.S. Masas, Bioresour. Bioprocess. (2020). https://doi.org/10.1186/s40643-020-00332-8

    Article  Google Scholar 

  2. D.J. Cosgrove, Nat. Rev. Mol. Cell Biol. (2005). https://doi.org/10.1038/nrm1746

    Article  Google Scholar 

  3. S. Rongpipi, D. Ye, E.D. Gomez, E.W. Gomez, Front. Plant Sci. (2019). https://doi.org/10.3389/fpls.2018.01894

    Article  Google Scholar 

  4. B.M. Jordan, J. Dumais, Biomechanics of plant cell growth, in encyclopedia of life sciences (ELS) (John Wiley & Sons Ltd, Toronto, 2010)

    Google Scholar 

  5. Yu.B. Grunin, LYu. Grunin, V.I. Talantcev, E.A. Nikolskaya, D.S. Masas, Biophysics (2015). https://doi.org/10.1134/S0006350915010133

    Article  Google Scholar 

  6. R.A. Horn, Morphology of wood pulp fiber from softwoods and influence on paper strength (U.S. Department of Agriculture, Forest Service, 1974)

    Google Scholar 

  7. L. Viikari, A. Suurnäkki, S. Grönqvist, L. Raaska, A. Ragauskas, Forest products: biotechnology in pulp and paper processing, in Encyclopedia of microbiology (Academic Press, Cambridge, 2009)

    Google Scholar 

  8. E. Małachowska, M. Dubowik, A. Lipkiewicz, K. Przybysz, P. Przybysz, Sustainability (2020). https://doi.org/10.3390/su12177219

    Article  Google Scholar 

  9. S.B. Stanković, D. Popović, G.B. Poparić, Polym. Test. (2008). https://doi.org/10.1016/j.polymertesting.2007.08.003

    Article  Google Scholar 

  10. R. Mu, X. Hong, Y. Ni, Y. Li, J. Pang, Q. Wang, J. Xiao, Y. Zheng, Trends Food Sci. Technol. (2019). https://doi.org/10.1016/j.tifs.2019.09.013

    Article  Google Scholar 

  11. Z. Shi, Y. Zhang, G.O. Phillips, G. Yang, Food Hydrocolloids (2014). https://doi.org/10.1016/j.foodhyd.2013.07.012

    Article  Google Scholar 

  12. H.M.C. Azeredo, H. Barud, C.S. Farinas, V.M. Vasconcellos, A.M. Claro, Front. Sustain. Food Syst. (2019). https://doi.org/10.3389/fsufs.2019.00007

    Article  Google Scholar 

  13. Y.P. Chauhan, R.S. Sapkal, V.S. Sapkal G.S. Zamre. Int. J. Chem. Sci. 7 (2009).

  14. A. Fiorati, G. Grassi, A. Graziano, G. Liberatori, N. Pastori, L. Melone, L. Bonciani, L. Pontorno, C. Punta, I. Corsi, J. Cleaner Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.119009

    Article  Google Scholar 

  15. G.M. DeLoid, X. Cao, R.M. Molina, D.I. Silva, K. Bhattacharya, K.W. Ng, S.C.J. Loo, J.D. Brain, P. Demokritou, Nano. Environ. Sci. (2019). https://doi.org/10.1039/C9EN00184K

    Article  Google Scholar 

  16. S. Das, J. Chakraborty, S. Chatterjee, H. Kumar, Nano. Environ. Sci (2018). https://doi.org/10.1039/C8EN00799C

    Article  Google Scholar 

  17. S.H. Hassan, L.H. Voon, T.S. Velayutham, L. Zhai, H.C. Kim, J. Kim, J. Renewable Mater. (2018). https://doi.org/10.7569/JRM.2017.634173

    Article  Google Scholar 

  18. A. Wolfberger, A. Petritz, A. Fian, J. Herka, V. Schmidt, B. Stadlober, R. Kargl, S. Spirk, T. Griesser, Cellulose (2015). https://doi.org/10.1007/s10570-014-0471-4

    Article  Google Scholar 

  19. E. Kontturi, S. Spirk, Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00488

    Article  Google Scholar 

  20. H. Seddiqi, E. Oliaei, H. Honarkar, J. Jin, L.C. Geonzon, R.G. Bacabac, J. Klein-Nulend, Cellulose (2021). https://doi.org/10.1007/s10570-020-03674-w

    Article  Google Scholar 

  21. A.E. Zavadskii, Fibre Chem. (2007). https://doi.org/10.1007/s10692-007-0106-8

    Article  Google Scholar 

  22. L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, Text. Res. J. (1959). https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  23. P. Penttilä, Structural characterization of cellulosic materials using X-ray and neutron scattering dissertation (University of Helsinki, Helsinki, 2013)

    Google Scholar 

  24. N. Abidi, M. Herath, Text. Res. J. (2017). https://doi.org/10.1177/0040517516688634

    Article  Google Scholar 

  25. W.R. Kunusa, I. Isa, L.A.R. Laliyo, H. Iyabu, J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/1028/1/012199

    Article  Google Scholar 

  26. P. Krishnamachari, R. Hashaikeh, M. Tiner, Micron (2011). https://doi.org/10.1016/j.micron.2011.05.001

    Article  Google Scholar 

  27. D. Capitani, F. Porro, A.L. Segre, Carbohydr. Polym. (2000). https://doi.org/10.1016/S0144-8617(99)00173-3

    Article  Google Scholar 

  28. W. Zhao, A. Kirui, F. Deligey, F. Mentink-Vigier, Y. Zhou, B. Zhang, T. Wang, Biotechnol. Biofuels. (2021). https://doi.org/10.1186/s13068-020-01858-x

    Article  Google Scholar 

  29. N.M. Khasanova, B.V. Sakharov, V.Y. Volkov, D.K. Nourgaliev, Low-field NMR method for analysis of heavy oils without extraction of asphaltenes. Conference Proceedings of 17th International Multidisciplinary Scientific GeoConference SGEM 2017, Vienna, Austria, 27–29 November 2017, 17, pp. 297–304.

  30. T. Koso, D. Rico del Cerro, S. Heikkinen, T. Nypelö, J. Buffiere, J.E. Perea-Buceta, A. Potthast, T. Rosenau, H. Heikkinen, H. Maaheimo, A. Isogai, I. Kilpeläinen, A.W.T. King, Cellulose (2020). https://doi.org/10.1007/s10570-020-03317-0

    Article  Google Scholar 

  31. L.Y. Grunin, Y.B. Grunin, E.A. Nikolskaya, N.N. Sheveleva, I.A. Nikolaev, Biophysics (2017). https://doi.org/10.1134/S0006350917020087

    Article  Google Scholar 

  32. Y.-Q. Song, J. Magn. Reson. (2013). https://doi.org/10.1016/j.jmr.2012.11.010

    Article  Google Scholar 

  33. R.F. Nogueira, M.I.B. Tavares, R.A.S. San Gil, A.G. Ferreira, Mater. Appl. Sci. (2011). https://doi.org/10.4236/msa.2011.25060

    Article  Google Scholar 

  34. S.C. Chinn, A. Cook-Tendulkar, R. Maxwell, H. Wheeler, M. Wilson, Z. Harry Xie, Polym. Test (2007). https://doi.org/10.1016/j.polymertesting.2007.07.005

    Article  Google Scholar 

  35. J. P. Patel, Shaw Ling Hsu. 2018. J. Polym. Sci. Part. Polym. Phys. https://doi.org/10.1002/polb.24583.

  36. Y. Nishiyama, J. Wood Sci. (2009). https://doi.org/10.1007/s10086-009-1029-1

    Article  Google Scholar 

  37. TD-NMR Analyzer Spin Track. http://www.nmr-design.com/products/nmr-analyzer-spin-track. Accessed 15 April 2023.

  38. A. Maus, C. Hertlein, K. Saalwächter, Macromol. Chem. Phys. (2006). https://doi.org/10.1002/macp.200600169

    Article  Google Scholar 

  39. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions (Clarendon Press, Oxford, 1987), p.610

    Google Scholar 

  40. J. Baum, A. Pines, J. Am. Chem. Soc. (1986). https://doi.org/10.1021/ja00284a001

    Article  Google Scholar 

  41. K. Saalwächter, Prog. Nucl. Magn. Reson. Spectrosc. (2007). https://doi.org/10.1016/j.pnmrs.2007.01.001

    Article  Google Scholar 

  42. M. Schneider, L. Gasper, D.E. Demco, B. Blümich, J. Chem. Phys. (1999). https://doi.org/10.1063/1.479291

    Article  Google Scholar 

  43. M.P. Nicholas, E. Eryilmaz, F. Ferrage, D. Cowburn, R. Ghose, Prog. Nucl. Magn. Reson. Spectrosc. (2010). https://doi.org/10.1016/j.pnmrs.2010.04.003

    Article  Google Scholar 

  44. A. Abragam, The principles of nuclear magnetism (Clarendon Press, Oxford, 1961), p.599

    Google Scholar 

  45. E.W. Hansen, P.E. Kristiansen, B. Pedersen, J. Phys. Chem. B. (1998). https://doi.org/10.1021/jp981753z

    Article  Google Scholar 

  46. W. Derbyshire, M. van den Bosch, D. van Dusschoten, W. MacNaughtan, I.A. Farhat, M.A. Hemminga, J.R. Mitchell, J. Magn. Reson. (2004). https://doi.org/10.1016/j.jmr.2004.03.013

    Article  Google Scholar 

  47. C. Hedesiu, D.E. Demco, R. Kleppinger, A.A. Buda, B. Blümich, K. Remerie, V.M. Litvinov, Polymer (2007). https://doi.org/10.1016/j.polymer.2006.12.019

    Article  Google Scholar 

  48. T.M. Todoruk, I.D. Hartley, R. Teymoori, J. Liang, H. Peemoeller, Materials (2011). https://doi.org/10.3390/ma4010131

    Article  Google Scholar 

  49. A.G. Redfield, J. IBM, J. Res. Dev. (1957). https://doi.org/10.1147/rd.11.0019

    Article  Google Scholar 

  50. A.G. Redfield, Adv. Magn. Reson. 1, 32 (1966)

    Google Scholar 

  51. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)

    Article  ADS  Google Scholar 

  52. V.I. Chizhik, Yu.S. Chernyshev, A.V. Donets, V.V. Frolov, A.V. Komolkin, M.G. Shelyapina, Magnetic resonance and its applications (Springer, Switzerland, 2014), p.788

    Book  Google Scholar 

  53. J.H. Van Vleck, Phys. Rev. (1948). https://doi.org/10.1103/PhysRev.74.1168

    Article  Google Scholar 

  54. E. Anoardo, G. Galli, G. Ferrante, Appl. Magn. Reson. (2001). https://doi.org/10.1007/BF03162287

    Article  Google Scholar 

  55. M. Goldman, J. Magn. Reson. (2001). https://doi.org/10.1006/jmre.2000.2239

    Article  Google Scholar 

  56. H.W. Spiess, Macromolecules (2017). https://doi.org/10.1021/acs.macromol.6b02736

    Article  Google Scholar 

  57. V. Räntzsch, M. Haas, M.B. Özen, K.-F. Ratzsch, K. Riazi, S. Kauffmann-Weiss, J.K. Palacios, A.J. Müller, I. Vittorias, G. Guthausen, M. Wilhelm, Polymer (2018). https://doi.org/10.1016/j.polymer.2018.04.066

    Article  Google Scholar 

  58. K. Saalwächter, in NMR Methods for Characterization of Synthetic and Natural Polymers (1st ed.), ed. by R. Zhang, T. Miyoshi, P. Sun (Royal Society of Chemistry, 2019), pp. 1–22.

  59. D. Besghini, M. Mauri, R. Simonutti, Appl. Sci. (2019). https://doi.org/10.3390/app9091801

    Article  Google Scholar 

  60. K. Schäler. Low-field NMR Studies of Structure and Dynamics in Semicrystalline Polymers. Dissertation Martin-Luther-Universität Halle-Wittenberg. Halle. 2012.

  61. K. Van Putte, J. Van Den Enden, J. Am. Oil Chem. Soc. (1974). https://doi.org/10.1007/BF02633005

    Article  Google Scholar 

  62. P. Mansfield, Phys. Rev. (1965). https://doi.org/10.1103/PhysRev.137.A961

    Article  Google Scholar 

  63. A. Papon, K. Saalwächter, K. Schäler, L. Guy, F. Lequeux, H. Montes, Macromolecules (2011). https://doi.org/10.1021/ma102486x

    Article  Google Scholar 

  64. M. Pieruccini, S. Sturniolo, M. Corti, A. Rigamonti, The. Eur. Phys. J. B. (2015). https://doi.org/10.1140/epjb/e2015-60417-6

    Article  Google Scholar 

  65. A. Pines, W.K. Rhim, J.S. Waugh, J. Magn. Reson. (1972). https://doi.org/10.1016/0022-2364(72)90154-0

    Article  Google Scholar 

  66. W.K. Rhim, A. Pines, J.S. Waugh, Phys. Rev. B. (1971). https://doi.org/10.1103/PhysRevB.3.684

    Article  Google Scholar 

  67. K. Takegoshi, C.A. McDowell, Chem. Phys. Lett. (1985). https://doi.org/10.1016/0009-2614(85)80134-2

    Article  Google Scholar 

  68. S. Matsui, J. Magn. Reson. (1992). https://doi.org/10.1016/0022-2364(92)90015-Y

    Article  Google Scholar 

  69. R.H.S. Garcia, J.G. Filgueiras, E.R. deAzevedo, L.A. Colnago, Solid State. Nucl. Reson. Magn. (2019). https://doi.org/10.1016/j.ssnmr.2019.101619

    Article  Google Scholar 

  70. W.K. Rhim, H. Kessemeier, Phys. Rev. B. (1971). https://doi.org/10.1103/PhysRevB.3.3655

    Article  Google Scholar 

  71. J. van Duynhoven, I. Dubourg, G.J. Goudappel, E. Roijers, J. Amer. Oil Chem. Soc. (2002). https://doi.org/10.1007/s11746-002-0493-7

    Article  Google Scholar 

  72. MM. Contreras, CR. Nascimento, RP. Cucinelli Neto, MF. Costa, CA. Costa. Data Brief. 2018. https://doi.org/10.1016/j.dib.2018.04.145.

  73. Yu.B. Grunin, M.S. Ivanova, D.S. Masas, LYu. Grunin, Biophysics (2019). https://doi.org/10.1134/S0006350919060071

    Article  Google Scholar 

  74. L. Grunin, M.H. Oztop, S. Guner, S.F. Baltaci, Magn. Reson. Chem. (2019). https://doi.org/10.1002/mrc.4866

    Article  Google Scholar 

  75. ISO 8292: Animal and vegetable fats and oils—determination of solid fat content—pulsed nuclear magnetic resonance method—Part 1: Direct method. 2008. pp 27

  76. E.A. Nikolskaya, L.Yu. Grunin, Yu.B. Grunin, Y. Hiltunen, Analit. Kontrol. Anal. Control. 2013.

  77. M. Tyufekchiev, A. Kolodziejczak, P. Duan, M. Foston, K. Schmidt-Rohr, M.T. Timko, Green Chem. (2019). https://doi.org/10.1039/C9GC02466B

    Article  Google Scholar 

  78. K.M. Kovalov, O.M. Alekseev, M.M. Lazarenko, Yu.F. Zabashta, Yu.E. Grabovskii, SYu. Tkachov, Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-017-2231-5

    Article  Google Scholar 

  79. V.S. Fedotova, M.P. Sokolova, V.K. Vorobiov, E.V. Sivtsov, N.V. Lukasheva, M.A. Smirnov, Polymers (2023). https://doi.org/10.3390/polym15092156

    Article  Google Scholar 

  80. S. Cichosz, A. Masek, Materials (2020). https://doi.org/10.3390/ma13204573

    Article  Google Scholar 

  81. B. Medronho, B. Lindman, Curr. Opin. Colloid Interface Sci. (2014). https://doi.org/10.1016/j.cocis.2013.12.001

    Article  Google Scholar 

  82. V. Ottesen, K. Syverud, Cellulose (2021). https://doi.org/10.1007/s10570-020-03517-8

    Article  Google Scholar 

  83. A. Ottenhall, J. Henschen, J. Illergård, M. Ek, Environ. Sci.: Water Res. Technol. (2018). https://doi.org/10.1039/C8EW00514A

    Article  Google Scholar 

  84. K. Ratajczak, M. Stobiecka, Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2019.115463

    Article  Google Scholar 

  85. E. Vittadini, L.C. Dickinson, P. Chinachoti, Carbohydr. Polym. (2001). https://doi.org/10.1016/S0144-8617(00)00282-4

    Article  Google Scholar 

  86. E.L. Lindh, C. Terenzi, L. Salmén, I. Furó, Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/C6CP08219J

    Article  Google Scholar 

  87. E.L. Hahn, Phys. Rev. (1950). https://doi.org/10.1103/PhysRev.80.580

    Article  Google Scholar 

  88. S. Meiboom, D. Gill, Rev. Sci. Instrum. (1958). https://doi.org/10.1063/1.1716296

    Article  Google Scholar 

  89. A.S. Traore, L. Foucat, J.P. Renou, Biopolymers (2000). https://doi.org/10.1002/(SICI)1097-0282(200005)53:6%3c476::AID-BIP4%3e3.0.CO;2-8

    Article  Google Scholar 

  90. V.V. Rodin, Biophys. Rev. (2020). https://doi.org/10.1007/s12551-020-00694-5

    Article  Google Scholar 

  91. J. Li, E. Ma, Forests (2021). https://doi.org/10.3390/f12070886

    Article  Google Scholar 

  92. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem. (1985). https://doi.org/10.1351/pac198557040603

    Article  Google Scholar 

  93. Yu.B. Grunin, LYu. Grunin, L.S. Gal’braikh, N.N. Sheveleva, D.S. Masas, Fibre Chem. (2018). https://doi.org/10.1007/s10692-018-9890-6

    Article  Google Scholar 

  94. G.H. Sørland, K. Djurhuus, H.C. Widerøe, J.R. Lien, A. Skauge, Diffusion Fundamentals. 5 2007.

  95. J. Arnold, Mobile NMR for rock porosity and permeability dissertation (RWTH Aachen University, Aachen, 2007)

    Google Scholar 

  96. E.D. Ostroff, J.S. Waugh, Phys. Rev. Lett. (1966). https://doi.org/10.1103/PhysRevLett.16.1097

    Article  Google Scholar 

  97. J.S. Waugh, L.M. Huber, J. Chem. Phys. (1967). https://doi.org/10.1063/1.1712185

    Article  Google Scholar 

  98. J.S. Waugh, L.M. Huber, U. Haeberlen, Phys. Rev. Lett. (1968). https://doi.org/10.1103/PhysRevLett.20.180

    Article  Google Scholar 

  99. F. Yamaguchi, T.D. Ladd, C.P. Master, Y. Yamamoto, N. Khaneja. Efficient decoupling and recoupling in solid state NMR for quantum computation. ArXiv: Quantum Phys. 2004.

  100. K. Adamić, Chem. Acta. 40(3), 111 (1968)

    Google Scholar 

  101. M. Foston, A.J. Ragauskas, Energy Fuels (2010). https://doi.org/10.1021/ef100882t

    Article  Google Scholar 

  102. M. Sikora, M. Krystyjan, A. Dobosz, P. Tomasik, K. Walkowiak, Ł Masewicz, P.Ł Kowalczewski, H.M. Baranowska, Polymers (2019). https://doi.org/10.3390/polym11111764

    Article  Google Scholar 

  103. A. Rachocki, J. Tritt-Goc, J. Polym. Res. (2006). https://doi.org/10.1007/s10965-005-9026-6

    Article  Google Scholar 

  104. A.A. Baker, W. Helbert, J. Sugiyama, M.J. Miles, Biophys. J. (2000). https://doi.org/10.1016/S0006-3495(00)76367-3

    Article  Google Scholar 

  105. R.E. Taylor, A.D. French, G.R. Gamble, D.S. Himmelsbach, R.D. Stipanovic, D.P. Thibodeaux, P.J. Wakelyn, C. Dybowski, J. Mol. Struct. (2008). https://doi.org/10.1016/j.molstruc.2007.08.006

    Article  Google Scholar 

  106. V.J. McBrierty, NMR Spectroscopy of Polymers in the Solid State, in comprehensive polymer science and supplements (Elsevier, Londan, 1989)

    Google Scholar 

  107. J. Leisen, H.W. Beckham, M.A. Sharaf, Macromolecules (2004). https://doi.org/10.1021/ma0489974

    Article  Google Scholar 

  108. F. Vaca Chávez, K. Saalwächter, Macromolecules (2011). https://doi.org/10.1021/ma102571u

    Article  Google Scholar 

  109. R. Fechete, D.E. Demco, B. Blümich, J. Magn. Reson. (2004). https://doi.org/10.1016/j.jmr.2004.03.026

    Article  Google Scholar 

  110. A. Wiesmath, NMR methods for strongly inhomogeneous magnetic fields application on elastomers using the NMR-MOUSE dissertation (RWTH Aachen University, Aachen, 2001)

    Google Scholar 

  111. F. Vaca Chávez, K. Saalwächter, Macromolecules (2011). https://doi.org/10.1021/ma1025708

    Article  Google Scholar 

  112. F. Vaca Chávez, K. Saalwächter, Phys. Lett. Rev. (2010). https://doi.org/10.1103/PhysRevLett.104.198305

    Article  Google Scholar 

  113. K. Saalwächter, A. Heuer, Macromolecules (2006). https://doi.org/10.1021/ma052567b

    Article  Google Scholar 

  114. F. Furtado, J. Damron, M.-L. Trutschel, C. Franz, K. Schröter, R.C. Ball, K. Saalwächter, D. Panja, Macromolecules (2014). https://doi.org/10.1021/ma4021938

    Article  Google Scholar 

  115. M. Mauri, Y. Thomann, H. Schneider, K. Saalwächter, Solid State Nucl. Magn. Reson. (2008). https://doi.org/10.1016/j.ssnmr.2008.07.001

    Article  Google Scholar 

Download references

Funding

This work was partially funded from the European Union's Horizon 2020 Research and Innovation program—MSCA-RISE under Grant Agreement No 101008228.

Author information

Authors and Affiliations

Authors

Contributions

LG: Conceptualization, Methodology, Validation, Investigation, Data curation, Writing—original draft, Writing—review and editing, Visualization, Supervision; MI: Methodology, Validation, Investigation, Data curation, Writing—original draft; VS: Investigation, Writing—original draft; TG: Investigation, Writing—original draft.

Corresponding author

Correspondence to Maria Ivanova.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grunin, L., Ivanova, M., Schiraya, V. et al. Time-Domain NMR Techniques in Cellulose Structure Analysis. Appl Magn Reson 54, 929–955 (2023). https://doi.org/10.1007/s00723-023-01600-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01600-4

Navigation